
Srini Devadas
Massachusetts Institute of Technology

Towards Secure High-
Performance Computer

Architectures

Architectural Isolation
of Processes

2

Fundamental to maintaining correctness
and privacy!

Performance Dictates
Microarchitectural Optimization

3

Isolation Breaks Because of Shared
Microarchitectural State!

Shared Last Level Cache

4

Line Offset
l-1…0

Address Tag
n-1…s+l

Set Index
s+l-1…l

Memory Address

…Set S-1, Way 1 Set S-1, Way W-1Set S-1, Way 0
⋮ ⋱ ⋮⋮

Set i, Way 1 Set i, Way W-1…Set i, Way 0

⋮⋮ ⋮ ⋱

Set 1, Way W-1Set 1, Way 0 …Set 1, Way 1

Set 0, Way W-1…Set 0, Way 1Set 0, Way 0

Way W-1…Way 1Way 0

Tag Line Tag Line Tag Line

Matched Line

Tag Comparator

Match? Matched Word

Process 1

Process 2

Control Flow Speculation for
Performance

I: Compute

I+1: Compute

I+2: Compute

I+3: Compute

I: Control Flow

J: Compute

J+1: Compute

J+2: Compute

K: Compute

K+1: Compute

K+2: Compute

Correct
direction

Mis-speculated
direction

Sequential
Instruction
Execution

Non-Sequential
Instruction
Execution

5

Control Flow Speculation is insecure

Speculative execution does not affect
architectural state → “correct”
… but can be observed via some “side channels”
(primarily cache tag state)

… and attacker can influence (mis)speculation
(branch predictor inputs not authenticated)

A huge, complex attack surface!
6

Domain of Victim

Transmitter

Secret

Receiver
ChannelAccess

Secret

Attacker

Pre-existing (RSA conditional execution example)
Written by attacker (Meltdown)
Synthesized out of existing victim code by attacker (Spectre)

Building a Transmitter

7

8

• Real systems: large, complex, cyberphysical
(not secure)

•Introducing a spy:

Hypervisor,
Bios

CPU

Side Channels Gone Wild!

D
R

AM
Chipset

Network

Thread L1 $
L2 $

L3 $D
R

AM
 C

trl
.

Disk

Main
board

OS

sharing!

sharing!sharing!

App

admins! users!
vendors!

users!

admins!

Philosophy

Build enclaves on an
enclave platform, not

just processes

9

Enclaves strengthen
the process abstraction

• Processes guarantee isolation of memory
• Enclaves provide a stronger guarantee

– No other program can infer anything private from
the enclave program through its use of shared
resources or shared microarchitectural state

• Largely decouple performance considerations
from security

• Minimally invasive hardware changes
• Provable security under chosen threat model

10

A Typical Computer
Trusted Computing Base

TRUSTED!

TRUSTED!

CPU!
!

DR
AM

!
Chipset!

Network!

Thread! L1 $!
L2 $!

L3 $!DR
AM

 C
trl

.!
Disk!

Main!
board!

Pr
iv

el
eg

e!

BIOS (SMM)!

Hypervisor (Ring 0, VMX root) !

OS Kernel (Ring 0) !

App! App!

(Ring 3) !

Software…!
… Running on hardware!

Secure App!

Single-Chip Secure Processor:
Shrink the TCB

Protected Environment

Memory

I/O

Trusted
Software

Protect

Identify

• Enclave assumes trusted hardware +
trusted software “monitor”

• Operating system is untrusted 12

Edward Suh’s ICS 2003 Talk on Aegis processor

Enclave Enclave

Enclave Lifecycle (simplified)

13

Enclave
binary
image

Untrusted
software (OS)

Create enclave,
Grant resources

Load
enclave

Seal
enclave

Enclave

Enclave
binary image

Enclave
binary
image

① ② ③

Enclave can no
longer be modified
from outside

Enclave has a
measurement for
attestation

Enclave Lifecycle (simplified)

14

Untrusted
software (OS)

Create enclave,
Grant resources

Load
enclave

Seal
enclave

Enter
enclave

Exit
enclave

Enclave
binary image

④
① ② ③

⑤

(enclave executes in a
strongly isolated

environment)

Platform erases
(flushes)

sensitive state

Strong Isolation Goal

• Any attack by a privileged attacker on the
same machine as the victim that can extract a
secret inside the victim enclave, could also
have been run successfully by an attacker on a
different machine than the victim.
– No protection against an enclave leaking its own

secrets through its public API.

• Three strategies for isolation: Spatial isolation,
temporal isolation and cryptography 15

Sanctum Design

Victor Costan, Ilia Lebedev
Sanctum: Minimal Hardware Extensions

for Strong Software Isolation

Software Stack

User

Supervisor

Hypervisor

Machine

Hypervisor

Host Application
Enclave

Security Monitor
Measurement Root

Enclave multiplexing

Operating System

Enclave management

Enclave syscall shims Sanctum-aware runtime
Non-sensitive code and data Sensitive code and data

Enclave setup

User

Supervisor

Hypervisor

Machine

Hypervisor

Host Application
Enclave

Security Monitor
Measurement Root

Enclave multiplexing

Operating System

Enclave management

Enclave syscall shims Sanctum-aware runtime
Non-sensitive code and data Sensitive code and data

Enclave setup

Software Stack

Target: multi-core processor
(no hyperthreading, no speculation)

L3
 C

ac
he

CBox

Core

L2 Cache

L3 Cache
Slice

L3 Cache
Slice

CBox

Core

L2 Cache

Home
Agent

CBox

Core

L2 Cache

L3 Cache
Slice

L3 Cache
Slice

CBox

Core

L2 Cache

QPI
Packetizer

Memory
Controller

DDR3
Channel

Ring to
QPI

Ring to
PCIeI/O Controller

UBox

QPI Link

PCIe Lanes

Microarchitectural State
Isolation in Sanctum Enclaves

• Resources exclusively granted to an enclave,
and scheduled at the granularity of process
context switches are isolated temporally
– Register files, branch predictors, private caches,

and private TLBs

• Resources shared between processes on-
demand, with arbitrarily small granularity are
isolated spatially by partitioning
– Shared caches and shared TLBs

20

Operating System
Manages Page Tables

Virtual
Address

Physical
AddressMapping

Page
Tables

Virtual
Address Space

Physical
Address Space

Address
Translation

Software DRAM

System bus

Practical Software Attack
on SGX “Simulators”

• Microsoft Research, IEEE S&P 2015: Exploit
no-noise side channel due to page faults

22

Page Table Isolation

Host application
space

Host application
space

EVRANGE A

Enclave A Virtual
Address Space

Physical Memory

Enclave A region

Enclave A page tables

Enclave A region

Enclave B region

Enclave B page tables

OS region

OS region

OS page tables

Host application
space

Host application
space

EVRANGE B

Enclave B Virtual
Address Space

Partitioning to Prevent Timing
Attacks

24

Line Offset
l-1…0

Address Tag
n-1…s+l

Set Index
s+l-1…l

Memory Address

…Set S-1, Way 1 Set S-1, Way W-1Set S-1, Way 0
⋮ ⋱ ⋮⋮

Set i, Way 1 Set i, Way W-1…Set i, Way 0

⋮⋮ ⋮ ⋱

Set 1, Way W-1Set 1, Way 0 …Set 1, Way 1

Set 0, Way W-1…Set 0, Way 1Set 0, Way 0

Way W-1…Way 1Way 0

Tag Line Tag Line Tag Line

Matched Line

Tag Comparator

Match? Matched Word

Enclave

OS

Page Coloring

DRAM Region
Index

Cache
Line Offset

5 0611
Page Offset

1214

Cache Set Index

DRAM Stripe
Index

151720 18
Cache Tag

Address bits used by 256 KB of DRAM

Address bits covering the maximum addressable physical space of 2 MB

Physical page number (PPN)

Page Colors
=

DRAM
Regions

0

MEMTOP

Normal DRAM
page colors

Sanctum DRAM
page colors / regions

0

MEMTOP

Region 0 Region 1 Region 2 Region 3
Region 4 Region 5 Region 6 Region 7

LLC set colors

Page Colors
=

DRAM
Regions

0

MEMTOP

Normal DRAM
page colors

Sanctum DRAM
page colors / regions

0

MEMTOP

Region 0 Region 1 Region 2 Region 3
Region 4 Region 5 Region 6 Region 7

LLC set colors

A little bit-shifting
gets us a large
contiguous DRAM
region

Sanctum Secure Processor
No Speculation, No Hyperthreading

RISCV Rocket Core, Changes required by Sanctum (+ ~2% of core)

Also requires 9 new config registers

29

Single-Chip Secure Processor

Protected Environment

Memory
I/O

Trusted
Software

Protect

Identify

• Sanctum’s protections are enough to protect
memory from software adversary

30

Single-Chip Secure Processor

Protected Environment

Memory
I/O

Trusted
Software

Protect

Identify

• If adversary has physical access to memory or if
pages are transferred from memory to disk:
– View memory: Encrypt memory
– Tamper with memory: Integrity verify memory
– Observe memory access patterns: Oblivious RAM

Sanctum Status and
Current Limitations

• We have built an open-source Sanctum based
on the RISC-V ISA
– Low performance and area overhead to support

enclaves
– Ongoing formal verification effort

• Sanctum is an academic, lightweight processor
• Apply its design philosophy to speculative

out-of-order (OOO) processors, which need
to protect against Spectre-style attacks

31

MI6 Design

Thomas Bourgeat, Ilia Lebedev,
Andrew Wright, Sizhuo Zhang, Arvind

MI6: Secure Enclaves in a
Speculative Out-of-Order Processor

RiscyOO Processor

33

Rename

ROB

ALU IQ Issue Reg
Read Exec Reg

Write

MEM IQ Issue Reg
Read

Addr
Calc

Update
LSQ

Physical Reg File

L1 D TLB

LSQ (LQ + SQ)

Commit

Issue
Ld

Deq

Store
Buffer

L1 D$

Resp
Ld

Issue
St

Resp
St

Rename
Table

Speculation
Manager

Epoch
Manager

Scoreboard

ALU pipeline

MEM pipeline

Load-Store Unit

Front-end

Fetch Bypass

Last Level Cache

RiscyOO Processor

34

Rename

ROB

ALU IQ Issue Reg
Read Exec Reg

Write

MEM IQ Issue Reg
Read

Addr
Calc

Update
LSQ

Physical Reg File

L1 D TLB

LSQ (LQ + SQ)

Commit

Issue
Ld

Deq

Store
Buffer

L1 D$

Resp
Ld

Issue
St

Resp
St

Rename
Table

Speculation
Manager

Epoch
Manager

Scoreboard

ALU pipeline

MEM pipeline

Load-Store Unit

Front-end

Fetch Bypass

Last Level Cache

Not speculating during
entire program results in
average 3X slowdown!

Enclave Lifecycle (simplified)

35

Untrusted
software (OS)

Create enclave,
Grant resources

Load
enclave

Seal
enclave

Enter
enclave

Exit
enclave

Enclave
binary image

④
① ② ③

⑤

(enclave executes in a
strongly isolated

environment)

Platform erases
(flushes)

sensitive state

MI6 keeps this overall lifecycle of enclaves
and enforces strong isolation in all phases

no speculation for all
transitions

speculation

MI6 Processor

36

Rename

ROB

ALU IQ Issue Reg
Read Exec Reg

Write

MEM IQ Issue Reg
Read

Addr
Calc

Update
LSQ

Physical Reg File

L1 D TLB

LSQ (LQ + SQ)

Commit

Issue
Ld

Deq

Store
Buffer

L1 D$

Resp
Ld

Issue
St

Resp
St

Rename
Table

Speculation
Manager

Epoch
Manager

Scoreboard

ALU pipeline

MEM pipeline

Load-Store Unit

Front-end

Fetch Bypass

Last Level Cache

All modules with private state are
flushed on enclave entry and exit.

Performance overhead ~ 5%.

MI6 Processor

37

Rename

ROB

ALU IQ Issue Reg
Read Exec Reg

Write

MEM IQ Issue Reg
Read

Addr
Calc

Update
LSQ

Physical Reg File

L1 D TLB

LSQ (LQ + SQ)

Commit

Issue
Ld

Deq

Store
Buffer

L1 D$

Resp
Ld

Issue
St

Resp
St

Rename
Table

Speculation
Manager

Epoch
Manager

Scoreboard

ALU pipeline

MEM pipeline

Load-Store Unit

Front-end

Fetch Bypass

Last Level Cache

Last Level Cache is spatially
partitioned.

Performance overhead ~7%.

Leaky Cache Hierarchy

38

Timing Independent
Cache Hierarchy

39

Fair LLC Arbiter.
Performance overhead ~8%.

MI6 Processor

40

Rename

ROB

ALU IQ Issue Reg
Read Exec Reg

Write

MEM IQ Issue Reg
Read

Addr
Calc

Update
LSQ

Physical Reg File

L1 D TLB

LSQ (LQ + SQ)

Commit

Issue
Ld

Deq

Store
Buffer

L1 D$

Resp
Ld

Issue
St

Resp
St

Rename
Table

Speculation
Manager

Epoch
Manager

Scoreboard

ALU pipeline

MEM pipeline

Load-Store Unit

Front-end

Fetch Bypass

Last Level Cache

Stop speculating: Every
memory instruction will
be stalled at the rename
stage until ROB is empty.

MI6 Processor

41

Rename

ROB

ALU IQ Issue Reg
Read Exec Reg

Write

MEM IQ Issue Reg
Read

Addr
Calc

Update
LSQ

Physical Reg File

L1 D TLB

LSQ (LQ + SQ)

Commit

Issue
Ld

Deq

Store
Buffer

L1 D$

Resp
Ld

Issue
St

Resp
St

Rename
Table

Speculation
Manager

Epoch
Manager

Scoreboard

ALU pipeline

MEM pipeline

Load-Store Unit

Front-end

Fetch Bypass

Last Level Cache

Stop speculating ONLY
during enclave copy
operations (I/O) à

overhead is negligible.

MI6 Processor

42

Rename

ROB

ALU IQ Issue Reg
Read Exec Reg

Write

MEM IQ Issue Reg
Read

Addr
Calc

Update
LSQ

Physical Reg File

L1 D TLB

LSQ (LQ + SQ)

Commit

Issue
Ld

Deq

Store
Buffer

L1 D$

Resp
Ld

Issue
St

Resp
St

Rename
Table

Speculation
Manager

Epoch
Manager

Scoreboard

ALU pipeline

MEM pipeline

Load-Store Unit

Front-end

Fetch Bypass

Last Level Cache

Area overhead for hardware
modifications is ~2% not counting

L1 cache, FPU, LLC slice.

MI6 Processor

43

Rename

ROB

ALU IQ Issue Reg
Read Exec Reg

Write

MEM IQ Issue Reg
Read

Addr
Calc

Update
LSQ

Physical Reg File

L1 D TLB

LSQ (LQ + SQ)

Commit

Issue
Ld

Deq

Store
Buffer

L1 D$

Resp
Ld

Issue
St

Resp
St

Rename
Table

Speculation
Manager

Epoch
Manager

Scoreboard

ALU pipeline

MEM pipeline

Load-Store Unit

Front-end

Fetch Bypass

Last Level Cache

Security Monitor virtually
unchanged. Hardware can evolve

separately from software (and vice
versa).

Challenge: Expressivity

• ~15% performance overhead for enclaves
• Enclaves trade expressivity for security

– Cannot make system calls directly since OS can’t
be trusted to restore an enclave’s execution state

– Enclave’s runtime must ask the host application to
proxy file system and network I/O requests

– What syscall functionality should the enclave’s
runtime provide?

44

Challenge: Adaptivity

• Runtime decisions based on sensitive data
leak information through timing: completion
time, resource usage

• Crypto to the rescue?
– Secure demand paging using page-level memory

encryption, integrity verification and ORAM
– Secure and efficient dynamic memory allocation

in enclaves an open problem

45

Challenge: Interaction

• Interaction with the outside may leak
information
– Public schedule for interaction does not leak

• Can we bound leakage of adaptive
interactions with users, other programs?

46

Can I
Trust You?

Challenge: (Formal) Verification

Open Source à Independent Verification

Properties of Enclaves:

Measurement := Different enclaves have different
measurements (also inverse)

Integrity := Modelled attacker cannot affect
enclave state

Confidentiality := Modelled attacker cannot
observe enclave state

47

Modeling the Adversary

Adversary := set of ops an attacker can use to
tamper with or observe enclave state. Any
combination of these can be used at any time.

Threat model := ∪(observation function, tamper
function, model initial state)

Specify non-interference properties or
invariants that execution should satisfy

48

Invariants and Non-Interference

49

Check
invariants

Do an attacker action
Init

operations
Do a victim action

The proof describes a CFG with
“forks”. Search this graph for a path
that violates an invariant.

Summary: Desiderata for
Single-Chip Secure Processor

• Open source
• Formally verified (small) TCB
• Secure against all practical software attacks
• Secure against physical attacks on memory
• Enhanced physical security against invasive

attacks
• Minimal performance overhead

50

Thank you for your attention!
51

Acknowledgements

• Edward Suh
• Victor Costan
• Ilia Lebedev
• Chris Fletcher
• Ling Ren
• Albert Kwon
• Sanjit Seshia
• Pramod Subramanyan

• Arvind
• Thomas Bourgeat
• Andrew Wright
• Sizhuo Zhang
• Kyle Hogan
• Jules Drean
• Rohit Sinha
• NSF, DARPA, ADI, Delta

