Graphene: A Secure Cloud Communication
Architecture

Abu Faisal and Mohammad Zulkernine

School of Computing, Queen’s University, Kingston, ON, Canada
{faisal, mzulker}@cs.queensu.ca

Abstract. Due to ubiquitous-elastic computing mechanism, platform
independence and sustainable architecture, cloud computing emerged as
the most dominant technology. However, security threats become the
most blazing issue in adopting such a diversified and innovative ap-
proach. To address some of the shortcomings of traditional security pro-
tocols (e.g., SSL/TLS), we propose a cloud communication architecture
(Graphene) that can provide security for data-in-transit and authentic-
ity of cloud users (CUs) and cloud service providers (CSPs). Graphene
also protects the communication channel against some most common
attacks such as man-in-the-middle (MITM) (including eavesdropping,
sniffing, identity spoofing, data tampering), sensitive information disclo-
sure, replay, compromised-key, repudiation and session hijacking attacks.
This work also involves the designing of a novel high-performance cloud
focused security protocol. This protocol efficiently utilizes the strength
and speed of symmetric block encryption with Galois/Counter mode
(GCM), cryptographic hash, public key cryptography and ephemeral
key-exchange. It provides faster reconnection facility for supporting fre-
quent connectivity and dealing with connection trade-offs. The security
analysis of Graphene shows promising protection against the above dis-
cussed attacks. Graphene also outperforms TLSv1.3 (the latest stable
version among the SSL successors) in performance and bandwidth con-
sumption significantly and shows reasonable memory usage at the server-
side.

Keywords: Cloud Computing - Security Protocol - Data-in-Transit -
Authentication - Perfect Forward Secrecy.

1 Introduction

Security concerns such as data breaches and tampering, weak identities and
access management, malicious insiders, system and application vulnerabilities
and shared technology vulnerabilities have hazardous impact on the cloud as re-
ported by the Cloud Security Alliance (CSA) [15]. To deal with these concerns,
the majority cloud service providers (CSPs) implement a mixture of security
and privacy controls to provide services to their customers. Cloud users (CUs)
connect to the cloud services using internet connectivity. However, existing tra-
ditional security protocols (e.g., SSL/TLS) that protect this connectivity, should
be more efficient to handle cloud communication related security issues. Every
now and then, a new security threat is raised. In most cases, man-in-the-middle

2 Abu Faisal and Mohammad Zulkernine

(MITM) (including eavesdropping, sniffing, identity spoofing, data tampering),
sensitive information disclosure, replay, compromised-key, repudiation and ses-
sion hijacking attacks can happen in cloud communications [8,15]. Traditional
security protocols (e.g., SSL/TLS) are not always able to satisfy the growing de-
mand of security in cloud communications for various reasons. These reasons are
mainly related to maintaining middlebox compatibility, backward compatibility
for older systems, downgrading due to unavailability of the selected protocol ver-
sion or cipher suites and some recent attacks (e.g., BEAST, DROWN, CRIME,
BREACH, WeakDH and Logjam, SSLv3 fallback, POODLE and ROBOT at-
tacks) [3-5,7,10,13,17-19, 28].

The final draft of TLSv1.3 [30] is published recently. It claims to have some
improvements over TLSv1.2 [31] in terms of security and performance. TLSv1.3
stops supporting all legacy symmetric encryption algorithms and static RSA and
Diffie-Hellman cipher suites. It adds (EC)DHE to the base specification. Also,
it uses only authenticated encryption with associated data (AEAD) algorithms.
However, it still has some vulnerabilities. In TLSv1.3, the first two roundtrip
handshake messages are merged into a single roundtrip message. This merged
message includes the client key-exchange information, supported cipher suites
information and “ClientHello” message together in unencrypted form. Most
importantly, before the client receives “ServerHello” message, all communica-
tions are performed in unencrypted form. The client key-exchange information
is one half of the key-exchange mechanism that is generated by random guessing
of the server-side algorithm. Therefore, if the server does not agree or support
that algorithm or the client sends no key-exchange information, the client needs
to generate and send the key-exchange information again using the agreed al-
gorithm which increases the roundtrip time. It still uses pre-shared key (PSK)
cipher suites along with the above changes. Also, superfluous messages such as
“ChangeCipherSpec” are eliminated while keeping a backdoor open for middle-
box compatibility.

In this paper, we propose a comprehensive secure cloud communication ar-
chitecture (Graphene). This architecture can effectively mitigate the existing
threats of cloud communications between cloud entities. Graphene ensures secu-
rity for data-in-transit and authenticity of cloud users (CUs) and cloud service
providers (CSPs). It does not have any middlebox or backward compatibility. Ei-
ther both parties communicate using the supported cipher suites recommended
by the NIST or the secure channel cannot be established. We perform secu-
rity analysis based on the man-in-the-middle (MITM) (including eavesdropping,
sniffing, identity spoofing, data tampering), sensitive information disclosure, re-
play, compromised-key, repudiation and session hijacking attacks. Thus, we show
that this architecture can efficiently mitigate these attacks. Graphene protects
the cloud communication channels with significantly less negotiation and band-
width overhead, reasonable memory usage and faster connectivity than the tra-
ditional security protocols (e.g., TLSv1.3).

Our main contribution in this paper is a comprehensive secure cloud com-
munication architecture called Graphene. More specifically, the paper makes the

Graphene: A Secure Cloud Communication Architecture 3

following contributions:

e Graphene provides a novel high-performance cloud focused security proto-
col. This protocol efficiently utilizes the strength and speed of symmetric block
encryption, cryptographic hash, public key cryptography and ephemeral key-
exchange mechanism.

e It utilizes new highly-compact message structures to support secure session es-
tablishment, reconnection and data transmission. These message structures help
achieve minimal bandwidth consumption and reasonable memory usage than
TLSv1.3 (the latest stable version among the SSL successors) and embed other
communication protocols inside it.

e Graphene ensures security of the data-in-transit and all associated secret
keys. It maintains perfect forward secrecy (PFS) by performing ephemeral key-
exchange on each session and encrypting the session with a new secret key.

e It is applicable to both TCP and UDP-based communications. It has no de-
pendency on the SSL/TLS/DTLS implementations at any part of the commu-
nication channel.

The rest of this paper is organized as follows. Section 2 presents the related
work. Section 3 discusses the proposed secure cloud communication architecture.
Section 4 provides the implementation and experimental environment of the
architecture. Section 5 presents the results. Finally, Section 6 summarizes the

paper.
2 Related Work

The main purpose of the existing cloud security research is to secure data during
cloud communications (data-in-transit) as well as the cloud data storages (data-
at-rest).

Google [20-22] uses multi-layer encryption model to secure the data-at-rest
while relying on default TLS for protecting the data-in-transit. Amazon Web
Services (AWS) [9] and Microsoft Azure [27] focus on protecting data integrity
using keyed-HMAC. AWS uses temporary non-stored session keys in EC2 load
balancers and Azure uses two-factor authentication to prevent unauthorized
access of data. However, they still use secure sockets layer (SSL) to provide
transmission protection to their customers. They also maintain MD5 compati-
bility for older systems. It is clearly visible that the CSPs are mostly concerned
to secure the data stored in their data centers by using multi-layer encryp-
tion model, keyed-HMAC, two-factor authentication etc. However, they rely on
default TLS and sometimes even SSL for protecting the data-in-transit which
makes the existing implementations vulnerable to all recent SSL/TLS related
attacks [3-5,7,10,13,17-19,28]. On the contrary, Graphene ensures security of
data-in-transit and authenticity of cloud entities. It does not support any security
techniques which have any known vulnerabilities. Graphene has its own novel
protocol, highly compact message structures and secure session management. It
provides higher level of security with lower level of bandwidth consumption and
reasonable memory usage.

AbdAllah et al. [6] propose a generic trust model (TRUST-CAP) for cloud-
based applications by focusing on infrastructure-as-a-service (IaaS). However,

4 Abu Faisal and Mohammad Zulkernine

it does not provide any specific protocol for securing cloud communications.
Conversely, Graphene provides a cloud-focused security protocol. It ensures ade-
quate protection to the communication channel and its associated cloud entities
against some most common cloud attacks. As Graphene follows the security ob-
jectives of the TRUST-CAP model, it can be used as the security protocol for
cloud communications in TRUST-CAP as well.

Kaaniche et al. [23] propose a cloud data sharing framework (CloudaSec)
that encrypts the data at the server-side using the hash of the data as the
symmetric key. Then, it encrypts the symmetric key using recipient’s public key
and includes that in the response metadata. Basically, it uses a form of hybrid
cryptography [2] where the symmetric key remains the same for unchanged data.
On the other hand, Liang et al. [26] and Chandu et al. [14] also propose a similar
approach that follows the generic hybrid cryptography. It uses AES to encrypt
the data at the client-side. Then, it encrypts the AES key using owner’s RSA
public key. After that, it uploads both the encrypted data and the encrypted
key to the cloud storage. Both approaches are vulnerable to compromised-key,
permanent data tampering, identity spoofing, MITM and MATE attacks.

Khanezaei et al. [24] propose a secure cloud storage service using server’s
public-key to perform RSA encryption to protect the data during communication
and storage. The service generates an AES secret key and stores it in the database
along with the RSA encrypted data for future sharing. However, this solution
imposes tremendous computing overhead on the cloud server for decrypting large
amount of RSA encrypted data on every request which is a very cumbersome
and slow process. The RSA encrypted data uses server’s public key which can
be decrypted easily using server’s private key. Moreover, the AES secret key
is stored along with the RSA encrypted data which makes this solution highly
prone to compromised-key, permanent data tampering, identity spoofing, MITM
and MATE attacks.

Kerberos [29] is a network authentication protocol that provides authenti-
cation in a non-secured environment. It uses a key distribution center (KDC)
which receives request for tickets from the clients. Then, the KDC generates
ticket-granting tickets (TGT) and encrypts it using client’s password. After re-
ceiving the encrypted response, the client decrypts it using the password. This is
different from the central key server (CKS) mechanism in Graphene. The CKS
is a root public key management system which helps Graphene architecture to
prevent MITM in all phases. It is designed to store, revoke and distribute root
public keys securely.

All the above discussed related work are focused on a specific facet of security
and operational behavior. They are mostly concerned about the data-at-rest and
their confidentiality, integrity or access control. Also, some recent attacks such
as BEAST, DROWN, CRIME, BREACH, WeakDH and Logjam, POODLE,
ShellShock and ROBOT attacks [3-5, 7,10, 13,17-19, 28] have shown that the
existing security protocols are not able to mitigate the increasing threats of
cloud communications. It becomes a major hindrance while expanding towards
IoT, fog or edge computing, connected vehicles etc. Therefore, a comprehensive

Graphene: A Secure Cloud Communication Architecture 5

secure cloud communication architecture is mandatory to mitigate the rising
threats against cloud communications.

3 Graphene Architecture

This section presents the proposed secure cloud communication architecture in
detail. In the following section, we discuss about the design of this architecture
and different communication phases of it. In Section 3.2, we explain the sequence
of events executed at both user and server ends.

3.1 Design Specification

Graphene focuses on the security of data-in-transit in cloud computing. It guar-
antees the authenticity of cloud entities by using a new Central Key Server (CKS)
mechanism. The CKS is designed to store, revoke and distribute root public keys
securely. Graphene efficiently combines and utilizes the strength and speed of
the symmetric block encryption, cryptographic hash, public key cryptography
and ephemeral key-exchange mechanism. Symmetric encryption provides con-
fidentiality, cryptographic hash enables integrity and public key cryptography
ensures authenticity and non-repudiation. It embeds these four essential secu-
rity elements into the communications in such a way so that a cloud user (CU)
can have a secure communication channel with the Cloud Front End (CFE)
server. It ensures security for both the data and the cryptographic keys.

The system does not use any long-term keys. Each session is encrypted with
a new secret key thus ensuring perfect forward secrecy (PFS). Graphene is ap-
plicable for both TCP and UDP-based communications. It works in the appli-
cation layer. Thus, it can be easily integrated with any protocols and server sys-
tems. Graphene utilizes seven highly compact new message structures: i) publish
(PUB), ii) acknowledge (ACK), iii) reconnect (RECON), iv) request (REQ), v)
response (RES), vi) expired (EXP), and vii) error (ERR). They make Graphene
more efficient in terms of performance, bandwidth consumption, memory usage
and integration with the existing protocols. These message structures facilitate
the secure session establishment, reconnection, data transmission and error han-
dling between cloud entities.

The architecture consists of six different communication phases such as regis-
tration, initialization, session establishment, data transmission, termination and
reconnection. First, the cloud entities need to register their root public keys to
the central key server (CKS) in the registration phase. After that, when any cloud
user wants to communicate to the cloud server, temporary cryptographic key-
pairs and hash functions are initialized in the initialization phase to establish an
encrypted session. Then, both the entities exchange their temporary public keys
with each other, signed by their respective root private key. The key-exchange
of temporary public keys is secured by hybrid-crypto mechanism [2,16] using
AES-GCM for data encryption and RSA/ECC for key encryption during the
session establishment phase.

After that, both entities generate common symmetric encryption key using
ephemeral key-exchange. Then, they start transmitting encrypted signed data
to each other in the data transmission phase. After sending the response payload

6 Abu Faisal and Mohammad Zulkernine

Cloud User (CU) Cloud Server (Cl)
---------------------------------- D
i 5 l :
' ' ' -
| Register Root ! Central Key H Register Root 10
_— — i
i Public Key to CKS ! Server (CKS) \ Public Key to CKS e &
i I
: i : :
e : I !
H i]
i Asymmetri Key i i ; Asymmetri Key i 5y
L . Exchange Hash') | 1 | Asymmetric Exchange Hash |1 § &
B i | Function | , v !| Function | 1 & £
[| H | \ HE
' Keypair Generation : i H Keypair Generation i
L : P :
i : : :
i i i
! Request CKS i i Request CKS H
I
' SIGNED Server's — :f: ;:::g:sy) —_— SIGNED Client’s '
i Root Public Key : ! Root Public Key i
: : ' .
! “
! Publish Client’s Publish (PUB) Publish Server’s g8
{ I
H Root Key SI.GNED | Root Key S!GNED v'e e
' Temp. Public Keys Acknowledge (ACK) Temp. Public Keys ' %
1 "o
: : : K
! Secret Key Generation ' ' Secret Key Generation 1
: : i :
T T
' ; : ;
!]
i Encrypt/Decrypt Signed Send Encrypted Signed Data Decrypt/Encrypt Signed ' Ew
! Data using i Data using Symmetric H s
' Encryption Receive Encrypted Signed Data Encryption ' ','; &
| : : |
H I ! 1 Q
_______________ Lo L
i T
i : : !
I @ ! [: q =2
I Closing * + Shutting Down ! @
: Releasing Resources ! \ \ . Connection ! £
' j 1] ']
i ' i i

Fig. 1. Different communication phases between cloud entities in Graphene architec-
ture

successfully to the cloud user, cloud server terminates the connection which is
called the termination phase. At this point, the server keeps the encrypted session
information till the session expires. Within that period, the cloud user can send
a reconnection request and re-establish the encrypted session for further data
transmission which is called the reconnection phase. Fig. 1 shows these phases
of communications used by Graphene which we discuss in detail in the following
paragraphs.

Registration Phase. All cloud entities must register their root public keys
to the central key server (CKS) prior to any communication. The CKS public
keys must also be installed in the cloud entity systems, to ensure integrity and
authenticity of the data communicated between the CKS and the cloud enti-
ties. The CKS itself and all communications (key registration, revocation and
distribution) with it are assumed to be secured at this point.

Initialization Phase. In case of cloud server instance (CI), this phase occurs
at the very beginning when the CI is initiated. However, for the cloud user (CU),
it occurs when a new cloud connection is created to commence communication
with the cloud front end (CFE) server. During this phase, each cloud entity
generates a pair of temporary public-private keypairs. One keypair (RSA/ECC)
is for maintaining the authenticity and integrity of the payloads. The other

Graphene: A Secure Cloud Communication Architecture 7

keypair (DHE/ECDHE) is for the ephemeral key-exchange. Each cloud entity
also initializes cryptographic hash functions according to the design specification.

Session Establishment Phase. When a CU tries to connect to the CI for the
first time, a temporary encrypted session is initialized between the CU and the
CIL. During this time, a pair of messages (PUB-ACK) are transmitted between
them. Both parties store the other party’s pair of public keys in that temporary
session protected by a 64-byte hashed session key. Then, they generate a common
secret key to proceed with the data transmission phase. The 64-byte hashed
session key is updated after every successful transaction (request-response). The
CU always receives the updated session key hidden inside the encrypted response.
When this session expires, all the negotiated public keys and generated common
secret key are destroyed automatically.

Data Transmission Phase. After establishing the secure session, both parties
use the common secret key to perform symmetric block encryption for maintain-
ing the confidentiality of the request and response payloads. The negotiated tem-
porary keypair (RSA/ECC) is used to perform payload signing and verification
that ensures authenticity and integrity of the payload throughout the session.
Every signing operation performed in this architecture involves timestamp to
protect against replay attacks. During this phase, a cloud focused cryptographic
hash function (Blake2b [1]) is used to protect the data integrity.

Termination Phase. In this phase, when the CI sends encrypted response back
to the CU successfully, the communication channel is terminated. The existing
session remains valid for reconnection until it is expired.

Reconnection Phase. This phase is not explicitly shown in Fig. 1. It has
implicit activity in this architecture. After the termination phase, if the CU
again connects to the server and sends a valid reconnection (RECON) packet
with the last received session key, the encrypted session is re-established between
the CU and the CI. The CFE maintains a session key mapping of the CIs. Based
on the session key, it reconnects the CU to the appropriate CI. Both parties use
the previously negotiated pair of public keys and the stored common secret key.
Therefore, re-keying the block cipher during the session is not needed.

3.2 Flow of Execution

This section explains how this architecture establishes a secure encrypted channel
for communications and all the internal steps illustrated by the sequence diagram
shown in Fig. 2.

Step-1. In this step, the cloud user (CU) initializes a cloud connection. A pair
of temporary public-private keypair is generated and the cryptographic hash
functions are initialized.

Step-2. After initializing the connection, the cloud user fetches the cloud server’s
root public key which is signed by the central key server (CKS) that ensures
authenticity and non-repudiation for both parties.

Step-3. The cloud user (CU) connects to the cloud front end (CFE) server and
a cloud instance (CI) is allocated for this connection.

8 Abu Faisal and Mohammad Zulkernine

Central Key Server Cloud Front End Cloud Instance
CKS) CFE] Cl]

Cloud User (CU)
1:initialize cloud connection

2: request cloud server's root public-key

2.1: receive cloud server's root public-key ’I

3: connect to the cloud front end

3.1: allocate cloud instance

1
2 4: encrypt the signed publish payload :
5: send the encrypted signed publish payload to the cloud server
1 T 5.1: decrypt the
encrypted signed
publish payload

! 5.2: request cloud user's root public-key

[lK 5.3: receive cloud usér's root public-key
1
! 5.4: validate the
5.5: send the encrypted signed ack payload to the cloud user authenticity &
integrity of the
received payload

6: decrypt then validate authenticity &
integrity of the received ack payload

F———

(encrypted session established)

7: send the encrypted signed cloud request payload to the cloud server M
1

! Zl 7.1: decrypt
7.2: send the encrypted signed cloud response payload to the cloud user and close connection then Va'_'d?@&
integrity of the
received payload

8: decrypt then validate authenticity &
integrity of the received payload

9: connect to the cloud front end again

10: send reconnect request to the cloud server

i
10.1.1: send reconnect confirmation to the cloud user T
i i

10.1: reconnect to the cloud instance ﬂ

(reconnected to encrypted session)

T
11: send the encrypted signed cloud request payload to the cloud server

T
i

! ! 11.1: decrypt

11.2: send the encrypted signed cloud response payload to the cloud user and close connection then validate

i authenticity &
integrity of the
received payload

12: decrypt then validate authenticity &
integrity of the received payload

Fig. 2. Sequence diagram showing the flow of execution in Graphene architecture

Step-4. The CU signs its temporary public keys with own root private key to
protect authenticity and integrity of the “publish” payload (PUB). After that,
the signed “publish” payload is encrypted using symmetric block encryption to
maintain the confidentiality of the payload in a hybrid-crypto mechanism [2,16].
Step-5. The CU and CI utilize the “publish” and “acknowledge” packets (PUB-
ACK) to share all temporarily generated public keys to each other. The CU
sends the encrypted signed “publish” payload to the CI. After decrypting the
received packet, the CI requests the cloud user’s root public key from the central
key server (CKS). Then, the CI validates the authenticity and integrity of the
received “publish” payload. After validation, the CI sends the encrypted signed
“acknowledge” payload (ACK) to the CU. This approach protects the session
establishment phase from man-in-the-middle (MITM) attacks.

Step-6. When the CU receives the encrypted signed “acknowledge” packet
(ACK), it also validates the authenticity and integrity of the received payload.
The cloud user stores cloud server’s temporary public keys in the session. After
finishing session establishment phase, the common secret key is generated at
both ends using the ephemeral key-exchange mechanism (DHE or ECDHE). A
secure encrypted communication channel is established without using any pre-
shared key or transmitting any part of the secret key. This generated secret key
is used to perform symmetric block encryption on the signed cloud payload.

Graphene: A Secure Cloud Communication Architecture 9

Step-7, 8. In this step, both parties perform data transmission (request-response)
which is first signed and then encrypted to protect confidentiality, integrity and
authenticity of the data. After sending the response, the cloud instance (CI)
terminates the connection with the cloud user (CU).

Step-9, 10. When the CU again wants to accomplish any more data connectiv-
ity and it has the valid session information, it can send a reconnection packet
(RECON) to the cloud front end (CFE) server. If any associated session is found,
the secure channel is re-established between the CU and the CI. They do not
need to perform the session establishment steps again. Otherwise, the CU must
go through Step-4 to Step-6 again.

Step-11, 12. Once the secure session is re-established, both the CU and the CI
can do data transmission again. After the response is sent back to the CU, the
CI closes the connection.

4 Implementation and Experimental Environment

This section explains the implementation and experimental environment used
to evaluate Graphene in terms of performance, bandwidth consumption and
memory usage. In the following section, we briefly discuss the implementation
details of the architecture. Then, in Section 4.2, we explain the experimental
environment.

4.1 Implementation

Graphene is developed using Java and Java Cryptography Architecture (JCA).
It has no dependency on any other platforms, tools and libraries. Therefore, our
implementation can be deployed in any platform or environment where Java run-
time environment (JRE) is available. To compare Graphene against TLSv1.3, we
run all our experiments in Javall.0.1 (LTS) which includes an implementation
of the TLSv1.3 specification [30]. A novel high-performance cloud focused secu-
rity protocol is designed and implemented with seven highly compact message
structures. Any types of payload data (e.g., HTTP, XML, JSON and Binary)
can be sent and received using this protocol with minimal changes in the existing
infrastructures and applications.

Graphene uses public-key cryptography for signing the payloads and ephemeral
Diffie-Hellman (at least 2048-bit) using MODP groups [25] as the key-exchange
mechanism. A latest cryptographic hashing algorithm Blake2b [1] is used for
maintaining the integrity of the data-in-transit. It is faster than SHA-families
and as secure as SHA-3 at minimum, which makes it a perfect candidate for
cloud communications and large volume of data hashing. SHA-512 is used to
generate temporary session keys from the connection properties and the client
supplied information. AES-256 with Galois/Counter mode (GCM) is used as the
symmetric block encryption for ensuring confidentiality throughout all the com-
munication phases. The system operates over 256-bit encrypted channel which
is the approved encryption standard for top secret information by both the Na-
tional Institute of Standards and Technology (NIST) and the National Security
Agency (NSA) of the USA.

10 Abu Faisal and Mohammad Zulkernine

This architecture is configurable to use any of the supported (RSA/ECC)
public-key cryptographic algorithms for payload signing and verification. How-
ever, the minimum key size recommended by the NIST is 2048-bit for RSA and
224-bit for ECC [12]. Our implementation strictly follows these recommenda-
tions made by the NIST at all steps [11,12]. AES (128/192/256-bit) encryption
is used as the supported symmetric block encryption in Graphene. AES-256 is
the highest level (military-grade) of symmetric encryption available at present.
It is also the default choice for confidentiality in Graphene. However, Graphene
can be configured to use any of the other key sizes or encryption algorithms if
this level of security is not required.

4.2 Experimental Environment

As illustrated in Fig. 3, cloud instances (CIs) are configured according to the
requirement. Each CI has 1 hyper-threaded vCPU core (4.0GHz frequency with
turbo boost), 4GB of RAM, 20GB of local SSD storage. Each cloud instance runs
CentOS 7 (minimal version) to have less interference from other processes. The
cloud instances are setup and controlled by a cloud front end (CFE) server. The
CFE server has a built-in basic load balancer which works in a simplified round-
robin fashion. It is responsible for distributing all incoming traffics to these cloud
instances equally by assigning the same weight to each instance (CI) unless the
incoming traffic is a reconnection request with valid session information.

Central Key Server (CKS) «mm»

S {::1 =

Balancer]

Cloud Users (CUs)

Load

Cloud Instances (Cls)

H

Cloud Front End (CFE)

Fig. 3. Experimental environment of the Graphene architecture

The CI records execution time for session establishment (if any), request
and response at the server-side for plaintext, TLSv1.3, TLSv1.2 and Graphene
with and without session-reconnection mechanism. However, the cloud user (CU)
monitors roundtrip time information at the client-side for further analysis. All
CUs run in an iterative fashion and send request with a specific size (100B, 500B,
1KB, 500KB or 1MB) of data every time. A separate secure public key regis-
tration and distribution server runs as a central key server (CKS) for managing
root public keys. In CKS, all cloud entities have their root public keys registered

Graphene: A Secure Cloud Communication Architecture 11

against their unique identifier. In Graphene, the CFE server and the CUs have
their public keys registered against their IP addresses and assigned random string
tokens. All experiments are performed in an iterative fashion (1000 times). Each
request belongs to a temporary encrypted session which has a hashed session key
generated from the connection properties and the client supplied information.

The reason behind comparing with TLSv1.3 in our experiment is that it is the
latest stable version among the SSL (Secure Sockets Layer) successors. TLSv1.3
is claimed to be more secure than TLSv1.2, where TLSv1.2 is proved to have a
steady and secure implementation than SSL, TLSv1.0 and TLSv1.1. SSLv3 and
TLSv1.0 are already declared obsolete and some vulnerabilities are reported for
TLSv1.1. Due to the severe data breaches caused by recent attacks, TLSv1.3 is
now recommended for secure communications over the internet. If TLSv1.3 is
not available, at least TLSv1.2 should be used for secure communications.

5 Results and Analysis

This section presents the results and analyzes the solution. All prominent crypto-
graphic technologies (public key cryptography, digital signature and verification,
symmetric block encryption and cryptographic hash) are evaluated iteratively
for different payload sizes (100B-20MB) to select the optimal choice for imple-
menting a high-performance cloud focused security protocol (i.e. Graphene) that
efficiently utilizes these technologies with respect to their strength and speed.
The following section presents a thorough security analysis of Graphene against
different types of attacks. After that, we evaluate the performance of Graphene in
terms of execution time on server-side, roundtrip time on client-side, bandwidth
overhead with respect to plaintext, memory usage at server-side and impact of
different payload sizes in the above mentioned scenarios.

5.1 Security Analysis

To show the level of defense provided by Graphene with respect to MITM
(including eavesdropping, sniffing, identity spoofing, data tampering), sensitive
information disclosure, replay, forward secrecy (compromised-key), repudiation
and session hijacking attacks, we provide a thorough analysis.

i) Man-in-the-Middle (MITM) Attack. This attack is basically a combi-
nation of different security attacks like eavesdropping, sniffing, identity spoofing
and data tampering. In MITM attacks, an adversary can actively eavesdrop to
a private communication between two legitimate users or even create separate
connections to each of the users to appear as a legitimate entity to both par-
ties (identity spoofing). Then, the attacker captures all the packets (sniffing)
and forwards them to the other party in such a way so that the victims are
forced to believe that they are communicating directly to each other over a pri-
vate connection. In the later approach, the attacker has full control over the
communication and can easily steal valuable information or even manipulate
the packets (data tampering) sent to the victims. In order to analyze Graphene
against these attacks, we investigate two types of connections made from any
entity in Graphene. One is from cloud user (CU) or cloud instance (CI) to the

12 Abu Faisal and Mohammad Zulkernine

central key server (CKS) and the other is in between CU and CI as discussed
below.

a) CU/CI to CKS. When any CU/CI requests any public key from the CKS,
the CKS responds with the requested public key payload signed by its own
root private key. The root public key of CKS is installed to all entity systems
during setup time. Thus, the receiver can verify the authenticity and integrity of
the received public key payload from the CKS which prevents identity spoofing
and data tampering. Since the payload is a public key and it is meant to be
shared publicly, confidentiality of this type of payload is not required at all.
Therefore, even if any adversary is eavesdropping or sniffing to this connection,
the adversary cannot tamper with the payload. Hence, MITM attacks are not
possible for this type of connection.

b) Between CU and CI. All communications between the CU and the CI are
securely protected (signed and encrypted). Each packet is signed by their root
or temporary private key based on the communication phase. Thus, the other
entity can always verify the authenticity of the sender by using sender’s root or
temporary public key. Signing each packet ensures the authenticity and integrity
of the received payload in all phases which prevents the identity spoofing and
data tampering attacks on DHE key-exchange and request-response payloads.
Finally, due to AES-GCM encryption, the adversary can never see the payloads
transmitted through this channel at any time which eliminates the scope of
eavesdropping or sniffing. Thus, ensuring MITM attacks cannot be successful on
this connection at all.

ii) Sensitive Information Disclosure. This attack often happens where the
payload is transmitted in plaintext or the encryption technique used is prone to
cryptanalysis attacks. In this scenario, the adversary can capture all the packets
and steal transmitted sensitive information without the knowledge of the user.
However, in Graphene, all communications between CU and CI are performed
using AES-GCM encrypted channel (at least 128-bit) from the transmission of
first packet. Thus, no sensitive information can be accessed without establishing
a proper communication channel.

iii) Replay Attack. This is one of the most common attacks which helps the
attacker to intercept valid payloads and retransmit those captured payloads re-
peatedly to perform some malicious or fraudulent activities. In Graphene, we
designed the architecture in a manner so that this kind of attack cannot be suc-
cessful. First, all our payload signing involve timestamp to create randomness in
the output. Then, temporary session key is updated after every successful trans-
action (request-response) during the data transmission phase. This timestamp-
based signing and temporary session key enable Graphene to prevent replay
attacks. Thus, at no point, an adversary can gain any benefit from repeating
any previously captured data.

iv) Forward Secrecy. In cryptography, forward secrecy is a feature that en-
sures compromising any secret key does not compromise the security of the past
payloads communicated between the entities. In our approach, we maintain per-
fect forward secrecy (PFS) through ephemeral Diffie-Hellman key-exchange with

Graphene: A Secure Cloud Communication Architecture 13

at least 2048-bit key size on each new session and by generating all associated
cryptographic keys per session as well. Therefore, even if one session is compro-
mised, other past and future sessions remain secure.

v) Repudiation. This means denying the responsibility of any actions per-
formed. In Graphene, all entities must be registered to CKS prior to any com-
munication. The session establishment phase is performed using their registered
root public-private keypair and both entities (CU and CI) negotiate temporary
keypairs for this session. Later on, all communications are authenticated us-
ing these temporary public-private keypairs. This ensures authenticity and non-
repudiation of the entities throughout this communication. Thus, this attack is
not feasible by any means over this communication channel.

vi) Session Hijacking. In session-based communications, attackers often try to
capture session related information. More specifically, they try to lookup session
keys or nonce information. In our approach, we use temporary hashed session
keys generated based on connection properties and client supplied information.
This session key enables cloud entities to re-establish their previous encrypted
session if not expired already. Each session key is updated after every successful
transaction (request-response) and most importantly, all transmitted packets in
Graphene are AES-GCM encrypted.

vii) Some Recent Attacks. Some hazardous attacks such as DROWN, CRIME,
BREACH, BEAST, WeakDH and Logjam, SSLv3 fallback, POODLE and ROBOT
attacks [3-5,7,10,13,17-19, 28] happen on traditional security protocols (e.g.,
SSL/TLS) that highly threaten the existing cloud infrastructures and their ex-
pansion towards fog or edge computing, IoT, connected vehicles, smart city etc.
Some of the attacks are performed by exploiting weaknesses in the security tech-
nologies whereas some are caused by misconfiguration of the system. Due to the
advancement of computing resources, security measures which deemed secure
in the past become vulnerable to brute force attacks, adaptive chosen plaintext
attacks, compression ratio leak, discrete logarithm or other cryptanalysis attack
techniques. Graphene strongly follows the NIST recommendations in choosing
suitable cryptographic algorithms and their minimum supported key sizes. This
enables Graphene to prevent such attacks. It uses Galois/Counter mode (GCM)
as the mode of operation for AES with new initialization vector (IV) values
for each request. Graphene does not deal with any compression techniques. It
strictly follows the recommended key sizes by the NIST [11,12] for the mini-
mum level of security and also uses MODP [25] groups (group id 14 or above)
to perform ephemeral key-exchange.

5.2 Performance Analysis

This section presents the performance evaluation of the implemented architec-
ture in terms of average execution time on the server-side, roundtrip time on the
client-side, bandwidth overhead with respect to plaintext, TLSv1.3 and TLSv1.2
communications and memory usage at the server-side. Table 1 represents the
specification of the experimental environment used for evaluating performance,
bandwidth overhead and memory usage.

14 Abu Faisal and Mohammad Zulkernine

Table 1. Cloud Instance Specification

Parameters Values

Virtual CPU(s), Memory|vCPUs: 1 (HyperThreaded), RAM: 4GB
VM Class Regular (Non-Preemptible)

Processing Unit 4.0GHz with Turbo Boost (8M Cache)

Cloud OS & Storage CentOS 7 (Minimal) with 20GB SSD Storage
CFE Load Balancer Round Robin

Sample Data 100B, 500B, 1KB, 500KB, 1MB

Number of Iteration 1000

Fig. 4(a) shows the average execution time for one of the investigated cloud
instances in milliseconds. We investigate the average execution times in dif-
ferent cloud instances for plaintext (yellow curve), TLSv1.3 (purple curve),
TLSv1.2 (orange curve), Graphene without session-reconnection (blue curve)
and Graphene with session-reconnection (green curve) for different payload sizes
(100B, 500B, 1KB, 500KB and 1MB).

Execution Time in Cloud Instance Roundtrip Time in Client Instance

1200 1200
-\/ Plaintext
— ~e-TLSv1.2
S ——TLSv1.3
. . -— —e—Graphene (No

Session)

=
o
S
=]
=
Q
S
=]

Plaintext

@
S
=]
@
S
=]

——TLSv1.2

— ——TLSv1.3
e —e—Graphene (No
Session)

Graphene (With Graphene (With
Session) Session)

IS
=]
=]

IS
S
3
Avg. Roundtrip Time (ms)
Y
3
3

Avg. Execution Time (ms)
Y
3
3

N
=]
=]
~
=1
=]

o
o

1008 5008 1KB 500KB 1MB 1008 5008 1KB 500KB 1MB
Payload Size (Bytes) Payload Size (Bytes)

(@) (b)
Fig.4. Comparison of average (a) server-side execution time and (b) client-side
roundtrip time in Graphene architecture (with/without session-reconnection) with re-
spect to plaintext, TLSv1.3 and TLSv1.2 communications for different payload sizes

Graphene with session-reconnection mechanism (green curve) outperforms
TLSv1.3 (purple curve) significantly for all payload sizes and lies very close to
the plaintext (yellow) curve and behaves the same in all cloud server instances.
Graphene with session-reconnection (green curve) performs around 90% faster
than the TLSv1.3 communication. Our solution even shows better results with
session-reconnection (green curve) and without session-reconnection (blue curve)
mechanism with respect to TLSv1.2 (orange curve).

On the client-side, we have measured the average roundtrip time (in millisec-
onds) by taking the sum of observed durations for connection creation, session
establishment (if present) and request-response time for different payload sizes.
Fig. 4(b) presents the average roundtrip time for one of the investigated client
instances under plaintext (yellow curve), TLSv1.3 (purple curve), TLSv1.2 (or-
ange curve), Graphene without session-reconnection (blue curve) and Graphene
with session-reconnection (green curve) for different payload sizes (100B, 500B,
1KB, 500KB, 1MB).

As observed from the performance curves of client-side average roundtrip
time, Graphene with session-reconnection mechanism (green curve) performs

Graphene: A Secure Cloud Communication Architecture 15

very close to that of the plaintext (yellow) curve and shows promising perfor-
mance against TLSv1.3 (purple curve). The performance of Graphene without
session-reconnection mechanism (blue curve) deteriorates in terms of average
roundtrip time at the client-side. However, if it is used with session-reconnection
mechanism, it is able to provide faster communication with higher level of secu-
rity.

The bandwidth overhead graph shown in Fig. 5(a) is calculated with respect
to the bandwidth consumption of the plaintext communication. It is readily no-
ticed that the bandwidth overhead for 100 bytes of payload size is more than
280% for TLSv1.3 (purple column) and over 380% more for Graphene with-
out session-reconnection mechanism (blue column). However, when Graphene is
used with session-reconnection mechanism (green column), it shows only 80%
overhead with respect to plaintext communication and provides 54% gain over
TLSv1.3 communication.

Bandwidth Overhead Memory Usage in Cloud Instance
450 180
400 Z 160
2 Plaintext
350 mTLSv1.2 3 140 5
¥ 300 3 120 —o-TLSv1.2
P I ETLSv1.3 bl
& 250 § 100
g | E o . ——TLSv1.3
8 ‘ M Graphene (No =
S 150 ‘ Session) 5 60 —e—Graphene (No
100 k= 40 Session)
‘ Gre?phene) 3 Graphene (With
50 ‘ (With Session) £ 20 Session)
0 0
1008 5008 1kB 500KB ivB 1008 5008 1KB 500KkB 1MB
Payload Size (Bytes) Payload Size (Bytes)
(a) (b)

Fig.5. Comparison of (a) bandwidth overhead and (b) average server-side memory
usage in Graphene architecture (with/without session-reconnection) with respect to
plaintext, TLSv1.3 and TLSv1.2 communications for different payload sizes

For 1KB of payload size, Graphene with session-reconnection mechanism
provides 32% gain over the bandwidth consumption of TLSv1.3. The graph
shows a decreasing trend with increasing payload sizes and for 500KB payload
size the overhead becomes nearly 1% for all types of communications with respect
to plaintext. Therefore, in case of large volume of data, it seems like the overhead
is negligible. However, Graphene with session-reconnection performs noticeably
well in smaller payload sizes as well as with the increasing payload sizes.

Fig. 5(b) shows the server-side memory usage (in MB) of Graphene in one of
the investigated cloud instances with respect to plaintext, TLSv1.3 and TLSv1.2
communications. From the figure, it is readily noticed that Graphene with and
without session-reconnection mechanism shows reasonable amount of memory
usage for different payload sizes which lies very close to the memory usage of
TLSv1.3 and TLSv1.2 communications. The usage pattern shows similar be-
havior in all the investigated cloud instances and the memory usage increases
proportionally with the increase in payload size.

Overall, Graphene with session-reconnection mechanism performs signifi-
cantly better than the TLSv1.3 in terms of server-side performance, client-side
roundtrip time, bandwidth overhead and memory usage at server-side. Once

16 Abu Faisal and Mohammad Zulkernine

the session establishment phase is complete, it can efficiently establish 256-
bit encrypted channel without causing any performance, bandwidth or memory
overhead. However, Graphene without session-reconnection mechanism performs
worse than TLSv1.3 because of the temporary keypair generations in each session
at both ends (client and server). In every session, two temporary keypairs are
generated at each side to establish the session. Communicating with the central
key server (CKS) by the cloud user and the cloud instance does not have that
much impact on the roundtrip time. Also, Graphene was not evaluated against
TLSv1.3 0-RTT mode due to unavailability of the implementation of this mode
in Javall.0.1 (LTS).

6 Conclusion

Most recent security attacks and vulnerabilities of the traditional security pro-
tocols (SSL/TLS), are the major road blocks in the expansion of cloud com-
puting. In this paper, we propose a comprehensive secure cloud communica-
tion architecture (Graphene) that mitigates these attacks and vulnerabilities.
In Graphene, security of data-in-transit and authenticity of cloud entities are
ensured and firmly integrated into the communications to protect against wide
range of cloud attacks. A novel high-performance cloud focused security pro-
tocol is designed and implemented. It has seven highly compact new message
structures which establish a secure performance and bandwidth-efficient proto-
col with reasonable memory usage. This architecture can successfully prevent
man-in-the-middle (MITM) (including eavesdropping, sniffing, identity spoof-
ing, data tampering), sensitive information disclosure, replay, compromised-key,
repudiation and session hijacking attacks. Graphene with session-reconnection
mechanism shows 90% faster execution time than TLSv1.3 (the latest stable
version among the SSL successors) on the server-side and exhibits similar per-
formance at the client-side as well. In terms of bandwidth consumption, it shows
54% gain over TLSv1.3 and overall reasonable memory usage against different
payload sizes. It enforces the NIST recommendation as the base level of secu-
rity for data-in-transit in cloud computing. In the future, we will work on the
applications of this architecture in different sectors.

Acknowledgment

This work is partially supported by the Natural Sciences and Engineering Re-
search Council of Canada (NSERC) and the Canada Research Chairs (CRC)
program. We would also like to convey special thanks to Mohima Hossain from
the TRL Lab at Queen’s University for the fruitful discussion and her critics
during this research work.

References

1. BLAKE2 — fast secure hashing. https://blake2.net/ (2017), accessed: 02 Sep. 2018
2. Hybrid CryptoSystem. https://en.wikipedia.org/wiki/Hybrid _cryptosystem
(2017), accessed: 02 Sep. 2018

oU

10.

11.

12.

13.

14.

15.

16.

Graphene: A Secure Cloud Communication Architecture 17

Weak Diffie-Hellman and the Logjam Attack. https://weakdh.org/ (2017), ac-
cessed: 02 Sep. 2018

CRIME. https://en.wikipedia.org/wiki/CRIME (2018), accessed: 02 Sep. 2018
Transport Layer Security: Attacks against TLS/SSL.
https://en.wikipedia.org/wiki/Transport_Layer_Security# Attacks_against_-
TLS/SSL (2018), accessed: 02 Sep. 2018

Abdallah, E.G., Zulkernine, M., Gu, Y.X., Liem, C.: Trust-cap: A trust model
for cloud-based applications. In: 2017 IEEE 41st Annual Computer Software
and Applications Conference (COMPSAC). vol. 2, pp. 584-589 (July 2017).
https://doi.org/10.1109/COMPSAC.2017.256

Adrian, D., Bhargavan, K., Durumeric, Z., Gaudry, P., Green, M., Halder-
man, J.A., Heninger, N., Springall, D., Thomé, E., Valenta, L., VanderSloot,
B., Wustrow, E., Zanella-Béguelin, S., Zimmermann, P.: Imperfect forward se-
crecy: How diffie-hellman fails in practice. In: Proceedings of the 22Nd ACM
SIGSAC Conference on Computer and Communications Security. pp. 5-17. CCS
'15, ACM, New York, NY, USA (2015). https://doi.org/10.1145/2810103.2813707,
http://doi.acm.org/10.1145/2810103.2813707

Amara, N., Zhiqui, H., Ali, A.: Cloud computing security threats and attacks with
their mitigation techniques. In: 2017 International Conference on Cyber-Enabled
Distributed Computing and Knowledge Discovery (CyberC). pp. 244-251 (Oct
2017). https://doi.org/10.1109/CyberC.2017.37

Amazon Web Services: Amazon Web Services: Overview of Security Processes.
https://d1l.awsstatic.com/whitepapers/Security /AWS_Security_Whitepaper.pdf
(May 2017), accessed: 02 Sep. 2018

Aviram, N., Schinzel, S., Somorovsky, J., Heninger, N., Dankel, M., Steube, J.,
Valenta, L., Adrian, D., Halderman, J.A., Dukhovni, V., Késper, E., Cohney, S.,
Engels, S., Paar, C., Shavitt, Y.: Drown: Breaking tls using sslv2. In: USENIX
Security Symposium. pp. 689-706 (2016)

Barker, E.B., Dang, Q.H.: SP 800-57 Pt3 R1. Recommendation for Key
Management, Part 3: Application-Specific Key Management Guidance.
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-57Pt3r1.pdf
(Jan 2015), accessed: 02 Sep. 2018

Barker, E.B., Roginsky, A.L.: SP 800-131A R1. Transitions: Recommendation
for Transitioning the Use of Cryptographic Algorithms and Key Lengths.
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-131Arl.pdf
(Nov 2015), accessed: 02 Sep. 2018

Bock, H., Somorovsky, J., Young, C.: Return of bleichenbacher’s oracle threat
(robot). In: Proceedings of the 27th USENIX Conference on Security Sympo-
sium. pp. 817-832. SEC’18, USENIX Association, Berkeley, CA, USA (2018),
http://dl.acm.org/citation.cfm?id=3277203.3277265, accessed: 02 Sep. 2018
Chandu, Y., Kumar, K.S.R., Prabhukhanolkar, N.V., Anish, A.N., Rawal, S.: De-
sign and implementation of hybrid encryption for security of iot data. In: 2017 In-
ternational Conference On Smart Technologies For Smart Nation (SmartTechCon).
pp. 1228-1231 (Aug 2017). https://doi.org/10.1109/SmartTechCon.2017.8358562
Cloud Security Aliance: The Treacherous 12 - Top Threats to Cloud Comput-
ing + Industry Insights. https://cloudsecurityalliance.org/download/artifacts/top-
threats-cloud-computing-plus-industry-insights/ (Oct 2017), accessed: 02 Sep. 2018
Cramer, R., Shoup, V.: Design and analysis of practical public-key encryp-
tion schemes secure against adaptive chosen ciphertext attack. STAM J. Com-
put. 33(1), 167226 (Jan 2004). https://doi.org/10.1137/S0097539702403773,
http://dx.doi.org/10.1137/50097539702403773

18

17.
18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

Abu Faisal and Mohammad Zulkernine

Duong, T., Rizzo, J.: Here come the xor ninjas. White paper, Netifera (2011)
Durumeric, Z., Li, F., Kasten, J., Amann, J., Beekman, J., Payer,
M., Weaver, N., Adrian, D., Paxson, V., Bailey, M., Halderman, J.A.:
The matter of heartbleed. In: Proceedings of the 2014 Conference
on Internet Measurement Conference. pp. 475-488. IMC ’'14, ACM,
New York, NY, USA (2014). https://doi.org/10.1145/2663716.2663755,
http://doi.acm.org/10.1145/2663716.2663755

Fardan, N.J.A., Paterson, K.G.: Lucky thirteen: Breaking the tls and dtls record
protocols. In: 2013 IEEE Symposium on Security and Privacy. pp. 526-540 (May
2013). https://doi.org/10.1109/SP.2013.42

Google: Encryption at Rest in Google Cloud Platform.
https://cloud.google.com/security /encryption-at-rest /default-
encryption/resources/encryption-whitepaper.pdf (Aug 2016), accessed: 02
Sep. 2018

Google: Encryption in Transit in Google Cloud.
https://cloud.google.com /security /encryption-in-transit /resources/encryption-in-
transit-whitepaper.pdf (Nov 2017), accessed: 02 Sep. 2018

Google: Google Infrastructure Security Design Overview.
https://cloud.google.com /security/infrastructure/design /resources/google -
infrastructure_whitepaper_fa.pdf (Jan 2017), accessed: 02 Sep. 2018

Kaaniche, N., Laurent, M., Barbori, M.E.: Cloudasec: A novel public-key based
framework to handle data sharing security in clouds. In: 2014 11th International
Conference on Security and Cryptography (SECRYPT). pp. 1-14 (Aug 2014)
Khanezaei, N., Hanapi, Z.M.: A framework based on rsa and aes encryp-
tion algorithms for cloud computing services. In: 2014 IEEE Conference
on Systems, Process and Control (ICSPC 2014). pp. 5862 (Dec 2014).
https://doi.org/10.1109/SPC.2014.7086230

Kivinen, T., Kojo, M.: More modular exponential (modp) diffie-hellman groups for
internet key exchange (ike). https://tools.ietf.org/html/rfc3526 (2003), accessed:
02 Sep. 2018

Liang, C., Ye, N., Malekian, R., Wang, R.: The hybrid encryption algorithm
of lightweight data in cloud storage. In: 2016 2nd International Symposium on
Agent, Multi-Agent Systems and Robotics (ISAMSR). pp. 160-166 (Aug 2016).
https://doi.org/10.1109/ISAMSR.2016.7810021

Microsoft: Trusted Cloud: Microsoft Azure Security, Privacy and Compliance.
http://download.microsoft.com/download/1/6,/0/160216 A A-8445-480B-B60F-
5C8EC8067FCA /WindowsAzure-SecurityPrivacyCompliance.pdf (Apr 2015),
accessed: 02 Sep. 2018

Moller, B., Duong, T., Kotowicz, K.: This poodle bites: exploiting the ssl 3.0 fall-
back, 2014. Security Advisory (Sep 2014), accessed: 02 Sep. 2018

Neuman, D.C.; Hartman, S., Raeburn, K., Yu, T.: The Kerberos Network Authen-
tication Service (V5). RFC 4120 (Jul 2005). https://doi.org/10.17487/RFC4120,
https://rfc-editor.org/rfc/rfc4120.txt

Rescorla, E.: The Transport Layer Security (TLS) Protocol Version 1.3.
RFC 8446 (Aug 2018). https://doi.org/10.17487/RFC8446, https://rfc-
editor.org/rfc/rfc8446.txt

Rescorla, E., Dierks, T.: The Transport Layer Security (TLS) Protocol Ver-
sion 1.2. RFC 5246 (Aug 2008). https://doi.org/10.17487/RFC5246, https://rfc-
editor.org/rfc/rfc5246.txt

