
Using Honeypots in a Decentralized Framework
to Defend Against Adversarial

Machine-Learning Attacks

Fadi Younis and Ali Miri

Department of Computer Science
Ryerson University, Toronto, Ontario, Canada

fyounis, ali.miri@ryerson.ca

Abstract. The market demand for online machine-learning services is
increasing, and so have the threats against them. Adversarial inputs rep-
resent a new threat to Machine-Learning-as-a-Services (MLaaSs). Metic-
ulously crafted malicious inputs can be used to mislead and confuse the
learning model, even in cases where the adversary only has limited ac-
cess to input and output labels. As a result, there has been an increased
interest in defence techniques to combat these types of attacks. In this
paper, we propose a network of High-Interaction Honeypots (HIHP) as
a decentralized defence framework that prevents an adversary from cor-
rupting the learning model. We accomplish our aim by 1) preventing the
attacker from correctly learning the labels and approximating the ar-
chitecture of the black-box system; 2) luring the attacker away, towards
a decoy model, using Adversarial HoneyTokens; and finally 3) creating
infeasible computational work for the adversary.

Keywords: adversarial machine learning; deception-as-a-defense; exploratory
attacks; evasion attacks; high-interaction honeypots; honeytokens

1 Introduction

Recent years has seen an exponential growth in the utilization of machine-
learning tools in critical applications, services and domains. This has led to
many service providers now offering their machine-learning products in the form
of online cloud services, known as Machine-Learning-as-a-Service (MLaaS) [20].
These services allow user to simply use these tools, without the efforts needed to
train, test, and fine-tune the underlying machine-learning models. While some
more experienced users may still prefer to control how their models are con-
structed and deployed, to protect their models MLaaS providers typically hide
the complex internal mechanisms from most of their users, and simply package
the services in non-transparent and obfuscated ways. That is they provide their
services in the form of a black-box [12] [18]. This opaque system container accepts
some input and produces an output, but in this system the internal details of the
prediction model are hidden from the user. Although hiding the internal mech-
anisms of models used can provide some protection against insider and outsider



attacks, these types of deployments remain susceptible to attacks. For example,
an attacker can try to mislead and confuse the MLaaS prediction model, using
specifically crafted examples, known as adversarial examples [12], leading to a
violation of the model integrity [18]. Most proposed defences against these types
of attacks aim to strengthen the underlying model by training it against possible
expected adversarial malicious inputs. These approaches - such as Regulariza-
tion and Adversarial Training [26] - may have limited success, as they do not
generalize against newer and more complex adversarial inputs. In this paper,
we propose a new defence framework, that can provide an additional layer of
protection for MLaaS services. As an example, we show how our framework can
be used to defend against malicious attacks on Artificial Neural Network (ANN)
classifiers. It has been shown that adversarial attacks on these type of classifiers
can go undetected [15]. Maliciously crafted adversarial examples can be used to
exploit blind spots in the classifier boundary space. Exploiting these blind sports
can be used to mislead and confuse the learning mechanism in the classifier, post
model training, for purposes of violating model integrity.

Our challenge here lies in constructing an adversarial defence technique ca-
pable of dealing with different, and possibly adaptive types of attacks. Part of
our defence framework utilizes adversarial HoneyTokens, fictional digital bread-
crumbs designed to lure the attacker. They are made conspicuously detectable,
to be discovered by the adversary. It is possible to generate a unique token for
each item (or sequence) to deceive the attacker and track his abuse. However
each token must be strategically designed, generated and deliberately embedded
into the system , to misinform and fool the adversary. A major component of
our defence framework is focused on designing a decentralized network of High-
Interaction Honeypots (HIHP), as an open target for adversaries, acting as a
type of perimeter defence. This decentralized network of honeypot nodes act as
self-contained sandboxes, to contain the decoy neural network, collect valuable
data, and potentially gain insight into adversarial attacks. We believe this can
also confound and deter adversaries from attacking the target model to begin
with. Other adversarial defenses can also benefit by utilizing this framework as
an additive layer of security to their techniques to protect production servers
where learning models reside. Unlike other defense models proposed in litera-
ture, we have designed our defense framework to deceive the adversary in three
consecutive steps, occurring in strategic order. The information collected from
the attacker’s interaction with the decoy model could then potentially be used
to learn from the attacker, re-train and fortify the deep learning model in future
training iterations, but for now this falls out outside of our scope.

The contributions of this paper are the following:

– We propose an adversarial defence approach that will act as a secondary-level
of protecting to cloak and reinforce existing adversarial defense mechanisms.
This approach aims to: 1) prevent an attacker from correctly learning the
classifier labels and approximating the correct architecture of the black-box
system; 2) lure attackers away from the target model towards a decoy model,
and re-channel adversarial transferability; 3) create unfeasible computational

2



work for the adversary, with no functional use or benefit, other than to waste
his resources and distract him while learning his techniques.

– We provide an architecture and extended implementation of the Adversar-
ial HoneyTokens, their designs, features, usage, deployment benefits, and
evaluations.

This paper focuses on using honeypots in defending against adversarial at-
tacks against machine learning techniques, and in particular deep learning. For
completeness, we have included some background and relevant concepts such as
adversarial examples, adversarial transferability and black-box learning systems
in the appendix. The rest of this paper is organized as follows. In Section 2, we
present the role of honeypots in our approach, threat models, attack environ-
ments and settings. In Section 3 , we present our 3-tier defence approach. In
Section 4 we will discuss the related work, followed by conclusions and future
work in Section 5.

2 Threat Model and Settings

2.1 Problem Definition

The main goal of this paper to build a decentralized adversarial defense frame-
work against adversarial examples. This level of defense will shield the black-box
learning system, using honeypots as one of the primary components of decep-
tion in building the framework. This decentralized framework must consist of H
high-interaction honeypots. Each of these honeypots is embedded with a decoy
target model Tdecoy, designed to lure and prevent an adversary with adversarial
input x from succeeding in causing a mislabeling attack f(x) = ytrue on the tar-
get model Ttarget. Essentially, the framework must perform the following tasks
below.

– task 1 - prevent the adversary from mimicking the neural network behavior in
the learning function f() and replicating the decision space of the model. This
will be done by blocking adversarial transferability, prevent the building of
the correct substitute training model F (Sp) from occurring and the transfer
of samples from the substitute model F to the target model Ttarget. This
makes it difficult to find a perturbation that satisfies O{x + δx} = O{x},
since the target model duplicated is fake.

– task 2 - the framework must lure the adversary away from the target model
T, using deception techniques. These methods consist of using: 1) deploy-
ment of uniquely generated digital breadcrumbs (HoneyTokens) TKn, 2)
making the network of honeypot nodes easily accessible 3) set up decoy tar-
get models Tdecoy, deployed inside the honeypots for the attacker to interact
with, instead of the actual target model Ttarget.

– task 3 - create an in-feasible amount of computational work for the attacker,
with no useful outcome or benefit. This can be accomplished by presenting
the attacker with a non-convex, non-linear and hard optimization problem,

3



which is generating adversarial samples to transfer to the remote target
model Ttarget, which in this case is a decoy; a decoy of the same optimiza-
tion problem we saw in the earlier sections:

x∗ = x + argmin{z : Ô(x + z) 6= Ô(x)} = x + δx
This strenuous task is complicated further for the attacker because in or-
der to generate the synthetic samples, the attacker must approximate the
unknown target model architecture and structure F to train the substi-
tute model F (Sp), which is challenging. Evasion is further complicated as
the number of deployed honeypots in the framework increases. Therefore,
building this system consists of solving three problems in one, preventing
of adversarial transferability1, deceiving the attacker and creating immense
computational work for adversary targeting the system to waste computa-
tional time and resources; all the later, while keeping the actual target model
Ttarget out-of-reach.

Hence, the adversarial examples generated need to have such an effect on the
classifier, that it explicitly lowers the confidence on the target label. Misclassifi-
cation attacks, to us, were less attractive since they do not make for interesting
adversaries, not to mention the fact that these type of attacks appear random
in nature, focusing on an arbitrary set of data samples. With no fringe inconsis-
tencies to dispute, it becomes difficult to discern failures brought about by non-
malicious factors effecting the classifier. Building on the latter, misclassification
attacks make it all the more difficult to design defenses and robust frameworks
to thwart adversaries when the attack itself seems arbitrary in nature.

2.2 Threat Model

Attack Specificity - generally, for an adversary to succeed in his attack, and
whether the attacker has his sight set on violating the availability or integrity
of the model, adversarial transferability needs to be successful. For purposes of
our paper, we have decided to design our adversarial attack to be a targeted
exploratory one in nature [9]. A targeted attack is when the adversary has a
specific set of data samples in mind, and is discriminatory in his attack. This
means the adversary wants to force the DNN to output a specific target label
ytarget, f(x) −→ ytarget, instead of the correct label ytrue, f(x) 9 ytrue. See
Figure 1 for an illustration of a adversarial targeted attack, violating model
integrity.

Exploited Vulnerability - the cogent properties of adversarial examples x∗

make them a prime candidate for adversarial attacks on deep learning systems.
It should be anticipated that an ambitious and equally resourceful adversary
will conspire to use these perturbations for malicious purposes. Generally, deep
neural nets (DNN) work by extracting and learning the key multi-dimensional

1 Even with the little knowledge possessed by a potential adversary, a targeted attack
in a black-box setting is still in fact probable

4



Fig. 1. Input x (left), modification δ + x controlled by ε (middle) which controls the
magnitude of modification in the image, generating the adversarial evading sample
x∗(right). As you can see, both bus images look astoundingly similar.

discriminate features Xm,n = {xn,1, xn,2, xn,3, ..., xn,m} embedded within the in-
put sample x pixels, to correctly classify it with the correct output label ytrue.
However, with adversarial examples entities, the acuity of a DNNs classification
ability becomes slightly manipulable, and the adversary is aware of this weak-
nesses.
In our paper, the designed adversary’s attack depends on the successful exploita-
tion of a fundamental vulnerability found in most, if not universally all DNN
learning systems. This vulnerability is acquired during faulty model training.
This weakness is embodied by a lack of non-linearity in poorly trained DNN
models, that these visually indistinguishable adversarial examples, born in a
high-dimensional space, epitomize. Other factors may also be responsible, such
as poor model regularization. This inability to cope with non-linearity makes the
DNN classifier insensitive to certain blind-spots in the high-dimensional classifi-
cation region. Knowing the latter, an adversary can generate impressions of the
input samples with slight perturbations. These examples can then be transferred
between adjacent models, due to the cross-model-generalization property which
allow the transfer of adversarial examples between the original and target model
the adversary desires to exploit. The above vulnerability is manifested after the
examples are synthesized and injected during the testing phase.

Attacker Capabilities - each honeypot node in the decentralized defense
framework contains a decoy target model Tdecoy, presented to the adversary
as the legitimate target model. Here, an Oracle O represents the means for the
adversary to observe the current state of the DNN classifier learning by observ-
ing how a target model Ttarget handles the testing sample set (x

′
, y

′
). In our

attack environment, querying the Oracle O with queries q = {q1, q2, q3, ..., qn}
is the exclusive and only capability an adversary possesses for learning about
the target model and collecting his synthetic dataset Sp to build and gradually

5



train his DNN substitute model F. The adversary can create a small synthetic
set of adversarial training samples from the initial set S0 with output label y

′

for any input x
′

by sending qn > 1 queries to the Oracle O. The output label
y

′
recurred is the result of assigning the highest probability assigned a label y

′

which maps back to a given x
′

is the only capability that the attacker has for
learning about presumed target model Ttarget through its Oracle O. The attacker
has virtually no information about the DNN internal details. The adversary is
restrained by the same restrictions a regular user querying the Oracle O has.
The latter is something an adversary should adhere to make his querying at-
tempts seem harmless, while engaging the decoy model within the adversarial
honeypot. Finally, we anticipate that the adversary will not restrict himself to
querying one model and will likely connect to multiple nodes and DNN model
classifiers from the same connection for purposes of synthetic data collection in
parallel. This should trigger an alarm within our framework, indicating multiple
access and that something abnormal is occurring.

2.3 Attack Setting

Our envisioned profile for the adversary targeting our black-box learning system
does not possess any internal knowledge regarding the core functional compo-
nents of the target model Ttarget DNN. This restriction entails no access to
model’s DNN architecture, model hyper-parameters, learning rate, etc. We have
already established that an adversary can prepare for an attack by simply mon-
itoring target model Ttarget through its Oracle O and use the labels to replicate
and train an approximated architecture F.
The ad-hoc approach at the adversary’s disposal is that he can learn the corre-
sponding labels by observing how the target model Ttarget classifies them during
the testing phase. The adversary can then build his own substitute training
model F and use this substitute model F in conjunction with synthetic labels
Sp to generate adversarial examples propped against the substitute classifier,
which the attacker has access to. Even if the substitute model S and target
model Ttarget are different in architecture, the adversarial examples x∗ generated
for one can still tarnish the other if transferred using adversarial transferability.
Since the adversarial examples between both models are only separated by added
tiny noise ε, the examples look similar in appearance. The latter is true even
if both models, original Ttarget and substitute model F, differ in architecture
and training data. As long as both models have the same purpose and model
type. Although the Adversarial transferability phenomena is discouraging, but
alone it is advantageous for the adversarial attackers to launch targeted attacks,
with little or no constraint on their attack blueprint. Adversarial transferability
eventually becomes a serious concern because attacks will grow in sophistication
and potency over time. It is challenging to design a model that can generalize
against more advanced attacks, if not all. Also, it is difficult to dismantle and
reverse-engineer how these attacks propagate and cause harm, since no tools
exist to expedite the process to learn from the attack in time to re-train the
network.

6



3 Deception-As-A-Defense Approach

The proposed Adversarial Honeynet framework is considered as an added layer
of protection to blanket a deployed deep learning system, in order to combat im-
perceptible adversarial examples, within a black-box attack setting. There are
several advantages and benefits that this framework can bring in the protection
of existing learning systems. A single adversarial honeypot node in this decen-
tralized framework may offer the following benefits: 1) adversarial re-learning ;
conceptually, it is a pragmatic method of collecting intelligence on the adversary,
such as attack patterns, propagation, frequency and evolution. The latter results
can be used to learn and reverse-engineer adversarial attacks; 2) an anomalous
classifier used to identify whether the attackers actions are malicious or benign,
this will help to determine whether or not to record the attackers session informa-
tion based on behavior patters against a white-list ; 3) a decoy target model, used
as a placeholder for the adversary to engage and interact in case his intention
are indeed malicious in nature. The attacker’s interaction with model is repre-
sented by the Oracle Ô, that an adversary observes and queries, re-channeling
his efforts; 4) an Adversarial Database, used to collect and securely store attack
session data on the adversary’s actions and maneuvers, used later to research
and understand the adversary in adversarial re-learning.

3.1 Adversarial Honeynet

All honeypot nodes are deployed with identical decoy models Tdecoy that resem-
ble the original target DNN model Ttarget. Also, all services and applications
on the high-interaction honeypot are real and not simulated, prompting the
attacker to assume the model is indeed real, published or leaked by mistake.
Neighboring adversarial honeypots are called HoneyPeers, these nodes are al-
ways active and have a weak non-privileged TCP/IP port open that is known
to attract adversaries, supported with adversarial honeytokens. The docker con-
tainer node begins recording information when the anomalous classifier detects
that the attacker is attempting to do something malicious and discretely notifies
the neighboring HoneyPeers that an attacker is active within the network. Hon-
eyCollectors are used to aggregate and collect information from each individual
adversarial honeypot node and store it in the central Adversarial Database. All
activities on the node are collected and stored with a public-key hashed time-
stamp. In our framework, the central database is a Samba database is used to
collect structured,unstructured, and semi-structured session data to record the
adversary-honeypot-decoy interaction. An analysis module, used to aggregate
adversarial information and use that to learn about the attacker, this learned
information can potentially be used to perform inference for future attacks. Fig-
ure 2 gives an illustration of our adversarial honeynet architecture.

3.2 Honeynet Functional Components

– HoneyPeers are a series of interconnected high-interaction honeypots joined
in a decentralized network topology. Each HoneyPeer is an autonomous high-

7



Fig. 2. Adversarial Honeynet Architecture

interaction honeypot contained node, with a copy of the decoy learning model
Tdecoy, embedded within a monitored Linux container, powered by Docker.
Encrypted communication messages are passed between the nodes in order
to notify adjacent nodes that an attack is occurring or has occurred. All
communication is governed by our message-passing-protocol defined in the
next section. Each node-to-node interaction is initiated by exchanging a Hon-
eySession Key, which is used to authenticate a node’s identity with each of
its peers and is reused in verify future interactions. If a node should become
unresponsive, it is assumed that the node has been compromised and is in-
fected. In the case that a node should become infected, it can be assumed has
been compromised by the adversary, in which case all neighboring nodes will
sever all future communication with it, flag any local session HoneySession
keys, and the infected honeypot will be cautionary labeled. Furthermore,
all node-to-node interactions are securely stored and recorded in the central
adversarial database.

– Decoy Classifier represents our solution for preventing the adversary from
interacting with the target classifier learning model Ttarget, and block trans-
ferability from occurring by re-channeling it to the honeypot. We distribute
fake decoy learning systems throughout the enterprise or specifically in the
anterior of a production system, acting as a type of sentinel. In this paper,
we hypothesize that legitimate users querying the learning system have no
cause to interact with decoys or take notice of our adversarial honeypot.
We decided to experiment with deception-as-a-defense using honeypot and
decoys because we wanted to give the adversary a false sense of assurance,
then identify and study them, and greatly reduce the rate of false-negatives
FN violating classifier integrity.
We suspect the adversary will attack our decoy learning classifier system
Tdecoy once he infiltrates the tailored honeypot container. It’s purpose is to
simply simulate and mimic value, in order to distract the adversary and
prevent him from interacting with the legitimate target model Ttarget. If we

8



consider the adversary to be weak, we see that the designed adversary only
has partial knowledge of the model’s purpose. This means the adversary does
not have possess any internal details of the architecture, hidden layers, or
hyper-parameters, etc. Knowing that the adversary is in a black-box setting
and can only access input/output gives us great leverage over him. Before
the adversary launches his attack, the adversarial actor in this case is like
any other regular user in the system, with no systematic knowledge of the
classifier. Here, the adversary’s capability to interact with the decoy model
Tdecoy is represented by the Oracle Ô. Ô represents the means for an ad-
versary to interact with and learn from decoy model. Since the adversary
wishes to produce adversarial examples x∗ for a specific set of input samples
x̄, collected by querying the Ô, and then transfer them. However, adversarial
transferability can be re-channeled if we can switch the target model Ttarget
and the Oracle O with a decoy model Tdecoy and thereupon Oracle Ô, and
convince the adversary that no tampering has occurred.

– HoneyCollector is the component responsible for collecting all the adver-
sarial session information on the adversary within each of the honeypot nodes
in the network, it is the Samba component within our system.

– Anomaly Classifier used to predict whether the adversary’s actions inside
the honeypot are considered abnormal or not. It depends on indicators, such
as 1) Number of DNN labeling requests; 2) execution of unusual scripts; 3) ir-
regular outbound traffic from source; 4) sporadic DNN querying ; 5) persistent
activity on the DNN ; 6) use of foreign synthetic data for labeling.

– Adversarial Tokens - They can be thought of as a digital pieces of in-
formation. It can manifested from a document, database entry, E-mail, or a
credentials. In essence, it could be anything considered valuable enough to
lure and bait the adversary.

3.3 HoneyPeer Node Inter-Communication

This section describes the message passing protocol between the nodes in the
adversarial Honeynet framework. A message can only be sent and received be-
tween two HoneyPeer nodes in the network that have exchanged HoneySession
key between them. Any message that has been received or sent spontaneously
should not be accepted. A reliable message passing technology must be set in
place to avoid congestion and bottleneck at one of many parts of the network.
Also, all messages sent, received, and dropped are time-stamped and recorded
within the adversarial central database for bookkeeping purposes.

– HoneyPeerALRM - a distress message indicating that host node (Sender)
has been compromised. The message is broadcast to the nearest adversarial
honeypot node in the network. The neighboring nodes (Receivers) are re-
sponsible for intercepting and passing the message to all neighboring nodes
in the network. For obvious security concerns and as fault-resistance, another
HoneyPeerALRM message is sent on behalf of the anomalous classifier, in
the case an adversary manages to seize control of the node and hijack it after

9



detection. Each HoneyPeerALRM message must receive an HoneyPeerACK
to indicate that the distress HoneyPeerALRM message has been received
and acknowledged. Failure to reply might indicate one or several neighbor-
ing nodes have also been compromised. To add, nodes should not receive
unsolicited HoneyPeerALRM reply messages from other adversarial nodes,
as this may indicate malicious misrepresentation.

– HoneyPeerAck - this is a message sent corresponding to each HoneyPeer-
ALRM message sent on behalf of the node. A HoneyPeerACK indicates that
the distress HoneyPeerALRM message has been received and confirmed by
the endpoint node. Failure to receive and acknowledge one ore more Acks
might indicate that one or all the surrounding neighboring nodes have been
compromised. Also, nodes should not receive unsolicited HoneyPeerALRM
reply messages from other adversarial nodes.

– HoneyPeerSafePulse - Periodically, a honeypot node will send a pulse
indicating that it is still active and part of the decentralized network, and
not compromised. If the node neighboring it does not reply in 180 seconds
with an HoneyPotSafeAck response, it is assumed that the node has been
compromised.

– HoneyPeerSafeAck - A confirmation message sent to indicate that the
node is active. After 3 consecutive (60 second interval) no replies, it can be
assumed that either the receiving node is down or has been compromised,
in which case, all neighboring nodes will sever all communication with it,
purge any HoneySession keys, and the infected honeypot will be labeled as
an InfectedPeer.

– HoneySession Key - An adversarial session key is exchanged between two
HoneyPeer nodes. This HoneySession Key is exchanged at the beginning of
a node-to-node interaction and will be used an authentication method in
future node-to-node communications.

3.4 Attracting the Adversary

Adversarial Honey-tokens we extended the honeybit token generator in [1]
to create the adversarial honeytokens generator, which acts as an automatic
monitoring system that generates adversarial deep learning related tokens. It is
composed of several components and processes. In order to understand how the
system functions, one must have an understanding of the individual operative
components and processes. The following points offer an insight into how the
system functions used to create token and decoy digital information to bait the
adversary:

– Baiting the Attacker - in order for the digital tokens generated by the
application to bait the attacker successfully they should have the following
properties: 1) be simple enough to be generated by the adversarial honey-
tokens application, 2) difficult to be identified and flagged as a bait token
by the adversary, 3) sufficiently pragmatic to pass itself as a factual object,
which makes it difficult for the adversary to discern it from other legiti-
mate digital items. The purpose of these monitored (and falsified) resources

10



is to persuade and lure the adversary away from the target DNN model
Ttarget, and bait him to instead direct his attack efforts towards a decoy
model Tdecoy residing within the honeypot trap. The goal here is to allow
the adversary’s malicious behavior to compromise the hoaxed model, pre-
venting the adversarial examples transferability to the Ttarget model from
occurring, and forcing the attacker to reveal his strategies, in a controlled
environment. The biggest challenge associated with designing these tokens
is adequate camouflaging to mimic realism, to prevent being detected and
uncloaked by the adversary.

– Adversarial Token Configuration - the configuration of the adversar-
ial honeypot generator occurs within the .yaml markup file (hbconf.yaml).
Here, the administrator sets the honeypot decoy host IP address, deployment
paths, and content format. The configuration file, through the path variables,
set where the tokens will be leaked inside the operating system, offering by
that a large degree of freedom. Also, the administrator can customize the
individual file tokens, as well as the general honeytokens and the adversarial
machine learning tokens added. As mentioned, this file allows the building
of several types of tokens. The first type of tokens are the honeyfiles, which
include txtmail, trainingdata, and testingdata. These type of tokens are text-
based and derive their formatted content from the template files stored in
the templates folder. The second type of tokens include network honeybits,
which include fake records deployed inside the UNIX configuration file or
any arbitrary folder. The latter include general type tokens such ssh, wget,
ftp, aws, etc, These tokens usually consist of an IP, Password, Port, and
other arguments. The third type of tokens deployed are the custom honey-
tokens which are deployed in the bash history; these tokens are much more
interesting since they take any structure or format the defender desires.

– Token Leakage - the most dominant feature of the adversarial honeyto-
ken generator is its ability to inconspicuously implant artificial digital data
(credentials, files, commands, etc) into the productions server’s file system.
The embedding location can be set inside the .yaml configuration file (hb-
conf.yaml) using the PATHS: bashhistory, awsconf, awscred and hosts. After
the defender compiles and builds the adversarial tokens they are stealthily
deployed at set path / locations within the designated production server’s
operating system. There, the tokens reside until they are found and accessed
by the adversary. The Docker container at this point records intelligence on
the attacker’s interaction with the token.

– Docker to Monitor the Adversary Access - Docker was selected since it
provides a free and practical way to contain application processes and sim-
ulate file system isolation, where the adversarial tokens application image
will be run. In our defense framework, the numerous production servers not
open to the public domain will be reserved for adversarial research to cap-
ture intelligence and analyze attacks. They will open via an exposed TCP/IP

11



port open to the public, with weak non-privileged access points. The docker
container will act as the sandbox, acting as entire layer to envelop the honey-
token application image. Using the insight gained from the adversaries later
lured to the honeypots will be used study emergent adversarial strategies,
input perturbations and discovering techniques used by adversaries in their
exploits. Docker will create a new container object for each new incoming
connects and set up a barrier represented as the sandbox. An unsuspecting
attacker that connects to the container and finds the tokens is presumably
lured to the honeypot containing the decoy DNN model Tdecoy. If the adver-
sary decides to leave, he is already keyed to that particular container using
his IP address, which connects him to the same container if he decides to
disconnect and then reconnect.

– Adversarial Token Generation - through the extended adversarial token
framework we compile the tokens using go build command. The following
are only some of the tokens that can be generated using the adversarial
honeytokens framework: 1) SSH token, 2) host configuration token, 3) ftp
token, 4) scp token, 5) rsync token, 6) SQL token, 7) AWS token, 8) text-
mail token, 9) training-data token, 10) testing-data token, 11 ) comment
tokens, 11) SSH password token, 12) start-cluster node token, 13) prepare
DNN model token, 14) train DNN model token, 13) test DNN model token
and 14) deploy DNN model token.

3.5 Detecting Adversarial Behavior

One of the greatest challenges in this paper was deciding how to adequately de-
tect, classify and label adversarial behavior as malicious. Not to mention build-
ing the actual classification model that would be responsible for doing so would
have been a great undertaking on its own. However, there were other practical
detection methods at our disposal, such as using signature-based detection to
compare an object’s behavior against a blacklist, and anomaly-based detection
to compare an object against a white-list. We chose to lean towards the former
method (white-list) over blacklisting since we did not have reliable adversarial
data that could have been used to generate a signature to fingerprint a poten-
tial adversary. White-list detection works best when attempting to detect entity
behavior that falls out of anticipated and well-defined user actions, such as over-
querying the DNN model, or causing a sudden decline in the classification model
performance. White-list based anomaly detection fits perfectly into our defense
framework since we can characterize any pattern of activities deviating from the
norm as an intrusion. The latter is in our favor since we are trying to detect
actions to exploit the classifier which are novel in nature.

3.6 Adversarial Behavior

In order detect adversarial anomaly behavior, we have summarized a list of
adversarial actions and indicators that may signal an an-out-of the-ordinary

12



on the learning model. We will later use this indicators to build our white-list
security rules. The following are some of those indicators:

– Persistent DNN Querying - while normal (non-adversaries) users will be
querying the DNN Tdecoy model with 1 or 2 queries per session, the adver-
sary will be sending hundreds, if not thousands per session. All this in effort
to build his synthetic training dataset Sp, the adversary will need to contin-
uously collect training data, augment it and gradually train his substitute
adversarial model F(S0). Repetitive queries Q̃ from the same source user
within a set unit of time might indicate the adversary is query-thrashing the
DNN model for labels (x

′
, y

′
). The latter could be a possible indication of

an adversarial attack on the prediction model.

– Spontaneous DNN Activity - in order for the adversary to craft adversar-
ial examples x∗, he will need to collect an initial set of labels S0 from labeling
(x

′
, y

′
). Then, he needs to build a substitute training model F that mimics

the learning mechanism inherent in the decoy model Tdecoy. naturally, col-
lecting enough sample labels to accurately train the model F requires a large
number of queries Q̃ solicited from the Oracle Õ. Consequently, in order to
avoid raising suspicions, the adversary will try to build this initial substitute
model training set S0, as quickly and discretely as possible. The latter could
be a possible indication of an adversarial attack on the prediction model.
This is true since a few queries is within normal user behavior, who have no
malicious intent in mind. But spontaneously querying the oracle falls out of
normal activity.

– High number of DNN Labeling Requests - an abnormally high number
of query requests to the Oracle Õ is not normal either. Let us not forget, that
training of the substitute model F(S0) is repeated several times in order to
increase the DNN model accuracy and similarity to Tdecoy. With each new

substitute training epoch e, the adversary returns to Õ and queries to aug-
ment (enlarge) the substitute model training set S0 produced from labeling.
This will produce a large training set with more synthetic data for training.
With the correct model architecture F, the enlarged dataset is used to pro-
totype the models decision boundaries separating the classification regions.

– Sudden Drop in Classification Accuracy - building on the above and
as discussed in Section 2, our designed adversary seeks to cause a misclassifi-
cation attack on the target decoy model Tdecoy, by inserting malicious input
in the testing phase. Because of this, an input unrecognizable to the model’s
discriminate function can be classified with high-confidence (false positive),
and an input recognizable to the model can be classified with low-confidence
(false negative), violating the integrity of the model. Other factors may in-
fluence a drop in accuracy, such as a poor learning or added bias in the data.
This does not normally occur in a production environment, which indicates
that our classification model is under attack.

13



- other known indicator are more network related, such as execution of un-
usual scripts alongside the DNN, Irregular outbound traffic or source, any
sensitive or privileged path accessed during the interaction, and any spawn-
ing of suspicious child process.

4 Related Work

The literature review below focuses directly on the concept of defending against
adversarial examples, aimed at misleading the classifier. Most of the known de-
fense methods are mainly based on data pre-processing and sanitation tech-
niques, employed during the training phase of DNN model preparation. Pre-
processing and sanitation typically mean influencing the effect that sample training-
set data, X, has on neuron weights of the underlying DNN model, by distinguish-
ing and filtering out malicious perturbations, inserted by an adversary that may
mislead and/or confuse the classifier causing a misclassification or violation of
model integrity. Other notable work in this section focus on the role of cyber-
security defense through means of deception, specifically with the use of decoys
and fake entities to deceive the attacker. Our challenge here lays in constructing
a secondary-level of protection and defense, designed not to replace known ad-
versarial defense techniques, but to supplement and reinforce existing ones, with
the use of adversarial deception re-enforcing the application perimeter.
[27] focuses on addressing the lack of efficient defenses against adversarial attacks
that undermine and then fool deep neural networks (DNNs). The need to tackle
this issue has been amplified by the fact that there is no unified understanding
of how or what makes these DNN models so vulnerable to attacks caused by
adversarial examples. The authors propose an effective solution which focuses
on reinforcing the existent DNN model and making it robust against adversarial
attacks, attempting to fool it. The proposed solution focuses on utilizing two
strategies to strengthen the model, which can be used separately or together.
The first strategy is using a bounded ReLU activation function,fR(x) → y, in
the DNN architecture to stabilize the overall model prediction ability. The sec-
ond is based on augmented Gaussian data for training. Defenses based on data
augmentation improve generalization since they consider both the true input
and its perturbed version. The latter enables a broader range of searches in the
input, then say adversarial training, which is limited in its partial of the input,
causing it to fall short. The result of applying both strategies results in a much
smoother and more stable model, without significantly degrading the model’s
performance or accuracy.
Work in [8] is the most relevant academic paper, with regards to motivation
and stimulus for the purpose of developing our proposed auxiliary defense tech-
nique, using honeypots. The authors in [8] propose a training approach aimed at
building adversarial-resistant black-box learning systems against adversarial per-
turbations, by blocking transferability. The proposed method of training, called
NULL-labeling works by evaluating input x and lowers confidence on the true
label y, if x is suspected to be perturbed and rejecting it as invalid input. The

14



criteria on which the method evaluates x is if it spans out of the training-data
data distribution area. The training method smoothly labels, filters out, and dis-
cards invalid input (NULL), which does not resemble training-data. This is to
prevent from allowing it to be classified into intended target label. The ingenu-
ity of this approach lies in how it is able to decisively distinguish between clean
and malicious input. NULL labeling proves its capability in blocking adversarial
transferability and resisting the invalid input that attempts to exploit it. The
latter is achieved by mapping malicious input to a NULL label and allowing
clean test data to be classified into its original true label, all while maintaining
prediction accuracy.
in [21], a training approach for combating adversarial examples and fortifying the
learning model. The authors propose this defense technique in response to adver-
sarial examples, with their abnormal and ambiguous nature. The authors argue
that model adversarial training still makes the model vulnerable and exposed to
adversarial examples. For this very purpose, the authors present a data-training
approach, known as Batch Adjusted Network Gradients or BANG. This method
works by attempting to balance the causality that each input element has on
the node weight updates. This efficient method achieves enhanced stability in
the model by forming smoother areas concentrated in the classification region
that has classified inputs correctly and has become resistant against malicious
input perturbations that aim to exploiting and violating model integrity. This
method is designed to avoid instability brought about by adversarial examples,
which work by pushing the misclassified samples across the decision boundary
into incorrect classes. This training method achieves good results on DNNs with
two distinct datasets, and has low computational cost while maintaining classi-
fication accuracy for both sets.
In [2], the authors suggest a framework that actively and purposefully leaks dig-
ital entities into the network to deceive adversaries and lure them to a honeypot
that is covertly monitors, tracks token access, and records any new adversarial
trends. In a period of one year, the monitored system was compromised by multi-
ple adversaries, without being identified as a controlled decoy environment. The
authors argue that this method is successful, as long as the attacker does not
change his attack strategy. However, a main concern for the authors is designing
convincing fake data to deceive, attract, and fool an adversary. The authors also
argue that the defender should design fake entities that are attractive enough
to bait the attacker, while not revealing important or compromising information
to the attacker. The defender’s goal is to learn as much as possible about the
attacker. The message that the authors try to convey is that as the threat of ad-
versarial attacks increases, so will the need for novelty in the defense approaches
to combat it.
Work in [19], serves as an examination of the concept of fake entities and dig-
ital tokens, which my framework partially relies upon. Fake entities, although
primitive, are an attractive asset in any security system. The authors suggest
fake entities could be files, interfaces, memory, database entries, meta-data, etc.
For the authors, these inexpensive, lightweight, and easy-to-deploy pawns are

15



as valuable as any of the other security mechanisms in the field, such as fire-
walls or a packet analyzers. Simply, they are digital objects, embedded with
fake divulged information, intended to be found and accessed by the attacker.
The authors advocate that operating-system based fake entities are the most
attractive and fitting to become decoys, due to the variety of ways the operat-
ing system interface can be configured and customized. Once in possession of
the attacker, the defender is notified and can begin monitoring the attacker’s
activity. Later in this work, the authors implement a framework that actively
leaks credentials and leads adversaries to a controlled and monitored honeypot.
However, the authors have yet to build a functioning proof-of-concept.
There is also extensive work done on utilizing adversarial transferability in other
forms of adversarial attacks, deep learning vulnerabilities in DNNs, and black-
box attacks in machine learning. Among other interesting work that served as
motivation for this paper include: utilizing honeypots in defense techniques, such
as design and implementation of a honey-trap [5]; deception in decentralized
system environments [22]; and using containers in deceptive honeypots [11]. Our
approach using honeypots, does not seek to replace any of the existing methods
to combat adversarial examples in a black-box attack context. However, it can
be used effectively as an auxiliary method of protection that strengthen existing
defense methods in production systems.

5 Conclusions

In this paper, we have discussed adversarial transferability of malicious exam-
ples, and proposed a defense framework to counter it, using deception derived
from existing cyber-security techniques. Our approach is the first of its kind to
use methods derived from cyber-security deception techniques to combat ad-
versarial examples. We have shown it to be possible to use deception to pre-
vent an adversary from mimicking a target model’s classification behavior, if
we successfully re-channel adversarial transferability. We have also presented a
novel defense framework that essentially lures an adversary away from the target
model, and blocks adversarial transferability, using various deception techniques.
We proposed presenting the adversary with an infeasible amount of computa-
tional with no useful outcome or benefit. This can be accomplished by presenting
the attacker with a hard non-convex optimization problem, similar to the one
used for generating adversarial samples. Our framework allows the adversary
to transfer these examples to a remote decoy learning model, deployed inside a
high-interaction-honeypot.

References

1. Adel Karimi: honeybits. https://github.com/0x4D31/honeybits, accessed on
March 27, 2019

2. Akiyama, M., Yagi, T., Hariu, T., Kadobayashi, Y.: HoneyCirculator: Distributing
credential honeytoken for introspection of web-based attack cycle. International
Journal of Information Security 17(2), 135–151 (Apr 2018)

16



3. Carlini, N., Wagner, D.: Adversarial Examples Are Not Easily Detected: Bypassing
Ten Detection Methods. In: Proceedings of the 10th ACM Workshop on Artificial
Intelligence and Security (AISec ’17). pp. 3–14 (2017)

4. Dowling, S., Schukat, M., Melvin, H.: A ZigBee honeypot to assess IoT cyberattack
behaviour. In: Proceedgings of the 2017 28th Irish Signals and Systems Conference
(ISSC). pp. 1–6 (Jun 2017)

5. Egupov, A.A., Zareshin, S.V., Yadikin, I.M., Silnov, D.S.: Development and im-
plementation of a Honeypot-trap. In: Proceedings of IEEE Conference of Russian
Young Researchers in Electrical and Electronic Engineering. pp. 382–385 (2017)

6. Goodfellow, I.J., Shlens, J., Szegedy, C.: Explaining and harnessing adversarial
esamples. International Conference on Learning Representations, 2017 p. 11 (2015)

7. Guarnizo, J.D., Tambe, A., Bhunia, S.S., Ochoa, M., Tippenhauer, N.O., Shabtai,
A., Elovici, Y.: SIPHON: Towards Scalable High-Interaction Physical Honeypots.
In: Proceedings of the 3rd ACM Workshop on Cyber-Physical System Security
(CPSS ’17). pp. 57–68 (2017)

8. Hosseini, H., Chen, Y., Kannan, S., Zhang, B., Poovendran, R.: Blocking Transfer-
ability of Adv. Examples in Black-Box Learning Systems. arXiv:1703.04318 (2017)

9. Huang, L., Joseph, A.D., Nelson, B., Rubinstein, B.I., Tygar, J.D.: Adversarial
Machine Learning. In: Proceedings of the 4th ACM Workshop on Security and
Artificial Intelligence (AISec ’11). pp. 43–58 (2011)

10. Irvene, C., Formby, D., Litchfield, S., Beyah, R.: HoneyBot: A Honeypot for
Robotic Systems. Proceedings of the IEEE 106(1), 61–70 (Jan 2018)

11. Kedrowitsch, A., Yao, D.D., Wang, G., Cameron, K.: A First Look: Using Linux
Containers for Deceptive Honeypots. In: Proceedings of the 2017 Workshop on
Automated Decision Making for Active Cyber Defense (SafeConfig ’17). pp. 15–22
(2017)

12. Kurakin, A., Goodfellow, I.J., Bengio, S.: Adversarial examples in the physical
world. International Conference on Learning Representations (ICLR) p. 14 (2017)

13. Lihet, M.A., Dadarlat, V.: How to build a honeypot System in the cloud. In:
Proceedings of the 2015 14th RoEduNet International Conference - Networking in
Education and Research (RoEduNet NER). pp. 190–194 (Sep 2015)

14. Liu, Y., Chen, X., Liu, C., Song, D.: Delving into transferable adversarial examples
and black-box attacks. In: Proceedings of the International Conference on Learning
Representations, 2017. p. 14 (2017)

15. Nguyen, A., Yosinski, J., Clune, J.: Deep neural networks are easily fooled: High
confidence predictions for unrecognizable images. In: Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition (CVPR). pp. 427–436 (2015)

16. Papernot, N., McDaniel, P., Wu, X., Jha, S., Swami, A.: Distillation as a Defense
to Adversarial Perturbations Against Deep Neural Networks. In: Proceedings of
the 2016 IEEE Symposium on Security and Privacy (SP). pp. 582–597 (May 2016)

17. Papernot, N., McDaniel, P., Goodfellow, I.: Transferability in Machine Learn-
ing: from Phenomena to Black-Box Attacks using Adversarial Samples.
arXiv:1605.07277 [cs] (May 2016)

18. Papernot, N., McDaniel, P., Goodfellow, I., Jha, S., Celik, Z.B., Swami, A.: Prac-
tical Black-Box Attacks Against Machine Learning. In: Proceedings of the 2017
ACM on Asia Conference on Computer and Communications Security (ASIA CCS
’17). pp. 506–519 (2017)

19. Rauti, S., Leppnen, V.: A survey on fake entities as a method to detect and monitor
malicious activity. In: Proceedings of the 25th Euromicro International Conference
on Parallel, Distributed and Network-based Processing (PDP). pp. 386–390 (2017)

17



20. Ribeiro, M., Grolinger, K., Capretz, M.A.M.: MLaaS: Machine Learning as a Ser-
vice. In: Proceedings of the 2015 IEEE 14th International Conference on Machine
Learning and Applications (ICMLA). pp. 896–902 (Dec 2015)

21. Rozsa, A., Gunther, M., Boult, T.E.: Towards Robust Deep Neural Networks with
BANG. Proceedings of the IEEE Winter Conference on Applications of Computer
Vision (WACV), 2018 (Nov 2016)

22. Soule, N., Pal, P., Clark, S., Krisler, B., Macera, A.: Enabling defensive deception
in distributed system environments. In: Resilience Week (RWS). pp. 73–76 (2016)

23. Suo, X., Han, X., Gao, Y.: Research on the application of honeypot technology in
intrusion detection systems. In: Proceedings of the IEEE Workshop on Advanced
Research and Technology in Industry Applications. pp. 1030–1032 (Sep 2014)

24. Tramr, F., Papernot, N., Goodfellow, I., Boneh, D., McDaniel, P.: The Space of
Transferable Adversarial Examples. arXiv:1704.03453 [cs, stat] (Apr 2017)

25. Xiao, Q., Li, K., Zhang, D., Xu, W.: Security Risks in Deep Learning Implemen-
tations. arXiv:1711.11008 [cs] (Nov 2017)

26. Yuan, X., He, P., Zhu, Q., Bhat, R.R., Li, X.: Adversarial Examples: Attacks and
Defenses for Deep Learning. arXiv:1712.07107 [cs, stat] (Dec 2017)

27. Zantedeschi, V., Nicolae, M.I., Rawat, A.: Efficient Defenses Against Adversarial
Attacks. In: Proceedings of the 10th ACM Workshop on Artificial Intelligence and
Security (AISec ’17). pp. 39–49 (2017)

6 Appendix

6.1 Deep Neural Nets (DNNs)

Deep Neural Networks (DNNs) are a widely known machine-learning technique
that utilizes n parametric functions to model an input sample x, where x could
be an image tensor, a stream of text, video, etc. [18]. DNNs differ from con-
ventional neural networks is the large number of (hidden) learning layers they
can use, which in return allows these models to adapt to intricate features and
solve complex problems. Amongst the countless uses for DNNs’ is their utility
in building image classification systems that can identify an object from the its
intricate edges, features, depth and colors. All of that information is processed
in the hidden layers of the model, known as the deep layers. As the number
of these deep layers increases, so does the capability of the DNN to model and
solve complex tasks. Simply expressed, a DNN is composed of a series of para-
metric functions. Each parametric function fi represents a hidden layer i in
the DNN, where each layer i compromises a sequence of perceptrons (artificial
neurons), which a processing units that can be modeled into chain sequence of
computation. Each neuron maps an input x to an output y, f : x −→ y, using
an activation function f(ϕ). With each layer, every neuron is influenced by a
parameterized weight vector represented by θij . The weight vectors holds the
knowledge of the DNN when it comes to training and preparing the model F. A
DNN computes and defines model a F for an input x as follows [18]:

F (x) = fn(θij , fn−1(θn−1,j , · · · , f2(θ2j , f1(θ1j ,x))))

18



6.2 Security of Deep Learning

In recent deep learning literature, there has been a lot of works that has focused
on deploying deep neural networks in malicious environments, in which the net-
work is potentially exposed to numerous attacks [6] [12] [26]. At the center of
these threats are Adversarial Examples. Adversarial examples are perturbed or
modified versions of input samples x, that are used by adversaries to mislead
and exploit deep neural networks, during test time, after training of the model is
completed [16]. They are injected in order to circumvent the learning mechanism
acquired by the DNN with the goal of misclassifying a target label. They are
crafted with carefully articulated perturbations, added to the input x+ δx, that
forces the DNN to display a different behavior than intended, chosen by the ad-
versary [16]. It is important to note that the magnitude of perturbations must be
kept small enough to have a significant effect on the DNN, yet remain unnoticed
by a human being. These adversarial exploitations vary in their motivation for
corrupting a DNN classifier, however some of the most common incentives range
from simply reducing the confidence of a target label to a arbitrary source-label
misclassification [16]. Confidence reduction entails reducing the accuracy on a
label y for a particular input x in the testing pair (x

′
, y

′
). By contrast, source

label misclassification involves having the model classify an input x as a chosen
target label ytarget, different from the original (and intended) true source label
ytrue. For any attack to be successful, it requires the adversary to have previous
knowledge of the DNN architecture, preferably a strong one. This knowledge
can perfect white-box attacks, partial black-box attacks or blind attacks with no
adversarial knowledge. However, it is possible to attack a DNN model F with
limited knowledge in hand. In past work, such as [16], the attacker was able to
approximate the architecture of a target model, Ftarget, in a black-box setting,
and create a substitute training model, which was then used to craft adversar-
ial examples that generalize on both models. These example were transferred
back to target model, by way of adversarial transferability [16] - a very powerful
property, which enables an adversary to transfer malicious examples between
models to evade a target classifier model. While deep learning networks have
gathered much attention in terms of capability to solve complex and hard to
solve problems, there are perilous threats that can erode and inhibit their po-
tential [25]. It is believed that deep neural networks can be exploited from these
three directions:

– Modified Training Data - commonly known as a causative or poisoning at-
tack, in which the adversary influences or manipulates the training data-set
χ, with a transformation. This modification could entail control over a small
portion or an important determinant feature dimension Di in the training
data. With this type of attack advance, the attacker can mislead the learner
in order to produce a badly classifier, which the adversary exploits post
training [9].

– Poorly Trained DNN Models - although considered an oversight, rather than
blamed on an external adversary. A perfunctory trained DNN could be due to
several reasons. Most of the time, developers credulously use DNNs prepared

19



and trained by others. These same DNNs could have hidden vulnerabilities
ripe for exploitation, which can become easy targets for manipulation by
adversaries during deployment [25].

– Perturbed Input Image - commonly known as adversarial examples [12], at-
tackers are also known to attack DNN models, during testing, by construct-
ing malformed input to evade the learning mechanism learned of the DNN
classifier. This is known as an evasion attack [9]. Our paper focuses on com-
bating the this kind of attack.

6.3 Adversarial Examples

As mentioned, machine-learning models are vulnerable to adversarial attacks
that seek to destabilize the neural network’s ability to generalize new input;
which jeopardizes the security of the model. From what we learned from the au-
thors in [9], these attacks can either occur during the training phase as a poison-
ing attack, or testing phase as an evasive attack, on the classification model. In a
test-time attack scenario, the attacker actively attempts to circumvent and evade
the learning process achieved by training the model. This is done by inserting
inputs that exploit blind spots in a poorly trained model, which cannot be easily
detected. These disruptive anomalies are known as adversarial examples. Adver-
sarial examples are slightly perturbed versions of regular input samples normally
accepted classifiers. They are maliciously designed to have the same appearance
as regular input, from a human’s point of view, at least. These masquerading
inputs are designed to confuse, mislead, and force the classifier to output the
wrong label [8], violating the integrity of the model. These examples can be best
thought of as “glitches” that can fool the deep learning model. These glitches
are difficult to detect and are widely exploitable, if left unattended. To better
understand them, consider this example: given an input sample x classified with
function C, such that C(x) = `, producing output `, that was correctly classified
by model A(· ), we say the perturbed input sample x∗, so that C(x∗) = `, we say
x

′
is an adversarial example of x such that A(x

′
) = A(x). Classification models

are considered robust if their classification ability is unaffected by the presence
and exploits of adversarial examples. adversarial examples x∗ possess an appear-
ance similar or close to the original input samples x. Normally used, although
not the only form of measurement. This measure of closeness or similarity be-
tween the pair of original and modified input is known as the p-norm distance
‖ x ‖p. This degree of closeness could be l2, which is the Euclidean Distance be-
tween two pixels in an input sample x, l∞, which is the absolute or max change
made to a pixel in x, or l1; which is the total number of pixel changes made to
the input sample x [3]. If the measure of distortion in any of the previous metrics
of closeness is small, then those input samples must be visually similar to each
other, which made them a prime candidate for adversarial example generation.
lose to each other for adversarial transferability to be successful.

20



6.4 The Adversarial Optimization Problem

Generating adversarial examples means there is a computational cost involved.
In the general case, adversarial examples are generated by solving a hard opti-
mization problem similar to the one below [18]:

x∗ = x + argmin{z : Ô(x + z) 6= Ô(x)} = x + δx

Where x + δx represents the least possible amount of noise added to cause a
perturbation, while remaining unnoticeable by humans. The adversary wishes to
produce adversarial examples x∗ for a specific input sample x that will cause a
misclassification by the target model Ttarget, with a queried adversarial sample,
such that O{x + δx} = O{x}. This misclassification proves that the classifier
has been compromised, and is no longer usable. The misclassification error and
drop in target label accuracy the attacker is after is achieved by adding the least
amount of possible noise δx to the input x, in order to be unnoticeable by hu-
mans, but just enough to mislead the DNN. Solving for x∗ is an optimization
problem that is not easy to solve since it is non-linear, where multiple true so-
lutions exist, and non-convex, where there not so easy to find. An optimization
problem is considered to be convex if convex optimization methods can be used
on the cost function J(θ), that if minimized minx J0(x), for the best possible
and unique outcome can guarantee a global optimal solution. In convex-type
problems, optimization is likely a well-defined problem here with one optimal
solution or global optimum across all feasible search regions. On the other hand,
a non-convex problem is one where multiple local minimums exist (solutions) ex-
ist for the cost function J(θ). Computationally, it is difficult to find one solution
that satisfied all constraints. Here, optimality has become a problem, and an ex-
ponential amount of time and variables are required to find a feasible solution,
where many indeed exist. By preventing the attacker from learning anything
about the model Ttarget in a black-box system setting; it makes it more difficult
to solve this computational challenge.
In our approach, we introduce this difficulty by deceiving the adversary and al-
lowing him to attempt in solving this optimization problem, as an infeasible task
for a decoy model Tdecoy, which has no real value. Generating these adversarial
examples is already exhaustive in computational cost time, as well as approxi-
mating and training the substitute decoy model to craft the examples. And if
the attacker does indeed succeed in generating these examples, it would a highly
infeasible task done in vanity.

6.5 Impact of Adversarial Examples on Deep Neural Nets

As it is known, a machine-learning application could be in severe jeopardy if the
underlying model were to fall in the hands of an adversary, with intentions on
launching an attack. However, there are certain measures taken to prevent the
latter from occurring. However, equally menacing, and as likely, is if an adver-
sary were able insert an input, image or query that would bypass the model’s

21



learning mechanism, and cause a misclassification attack, in full view of the de-
fender. Adversarial Examples have the ability to do just that.
Deep neural nets depend on the discriminate featuresXm,n = (x1,1, x1,2, x1,3,. . . , x1,n),
embedded within the image that the DNN model recognizes and learns, which
it then assigns to its correct class label. However, according to [15] it was shown
that the DNN models can be tricked and convinced that a slightly perturbed im-
age or input that should otherwise be unrecognizable and consequently rejected
by the neural network, can be forced to be generalized and accepted as a recog-
nizable member of a class in the targeted model. The consequence of this is that
many state-of-the-art machine-learning systems deployed in a real-world setting
are left vulnerable to adversarial attacks, at any point in time from any user.
This creates calamity, because any chosen input unrecognizable to the model
can be transformed and classified with high confidence causing a (false positive),
and an input recognizable to the model can be classified with low confidence
(false negative), violating the integrity of a prediction model, eventually making
it unusable. For instance, some of the most striking examples are in the case of
audio inputs that sound unintelligible (to human), but contain voice-command
instructions that could mislead the deep neural network [12]. In the case of facial
recognition scenario, where the input is subtly modified with markings that a
human being would recognize their identity correctly, but the model identifies
them as someone else [12].

6.6 Adversarial Transferability

According to the authors in [24], the hypothesis of Adversarial Transferability
is formulated as the following:

“If two models achieve low error for some task while also exhibiting low
robustness to adversarial examples, adversarial examples crafted on one model
transfer to the other.”

In simple terms, the idea behind Adversarial Transferability is that for an in-
put sample x, the adversarial examples x∗ generated to confuse and mislead one
model m can be transferred and used to confuse other models n1, n2, n3, ..., ni,
that are of homogeneous or even heterogeneous classifier architectures. This mys-
terious phenomena is mainly due to the determining property commonly shared
by most, if not all machine-learning classifiers, which states that predictions
made by these models vary smoothly around the input samples making them
prime candidates for adversarial examples [8]. It is also worth noting these per-
turbed samples, referred to here as adversarial examples, do not exist in the
decision space as a mere coincidence. But according to one hypothesis in [6],
they occur within large regions of the classification model decision space. Here,
dimensionality of the data is a crucial factor associated with the transferability
of adversarial examples. The authors hypothesize that the higher dimension-
ality of the training data example set D, the more likely that the sub-spaces
will intersect significantly, guaranteeing the transfer of samples between the two
sub-spaces [6]. According to the above hypothesis, transferability holds true be-
tween two models as long as both models share a similar purpose or task [17].

22



Knowing this, an attacker can leverage the property of transferability to launch
an preemptive attack, by training a local substitute classifier model F on sam-
ple testing data pairs (x

′
, y

′
), that the chosen remote target classifier Ttarget

were generalized on. Collecting these testing pairs can be formed into a training
dataset Dtraining of size N of similar dimensions and content. With the latter
we can produce adversarial examples x∗. It is also worth noting that the success
rate of transferability varies depending on the type of remote target classifier
the examples x∗ are being transferred to. These modified examples can then be
transferred to the target classifier. Hence, the same perturbations that influence
model n also effect model m. Knowing that the above hypothesis is true in the
general case, Papernot used this very same concept to attack learning systems
using adversarial examples generated and transferred from a substitute classifier
in [18], which is the same attack we also used for our designed adversary. This
transfer property is an anomaly, and creates an obstacle in the face of deploying
and securing machine-learning services on the cloud, enabling exploitation and
ultimately attacks on black-box systems [24], as we’ll see in the coming sections.

6.7 Black-Box Learning Systems

To explain a black-box threat model, we start by describing the term black-box
system concept. A black-box is essentially a system that can be construed in
terms of inputs x and outputs y, with the internal mechanisms of the system
f(x) = y transforming x into y remaining invisible. The functionality of the
black-box can only be understood by observation, which is what the attacker
depends on to begin his attack. The black-box threat model is by extension a
black-box system. In our paper, we are attempting to prevent the attacker from
polluting the target classifier Ttarget, by blocking transferability and access to
the target model to change the prediction on the class label y. Here, we consider
the adversary to be weak with limited knowledge, as in he can only observe the
inputs inserted and outputs produced, while possessing little knowledge of the
classifier itself. The adversary possesses very little, if no knowledge at all of the
classifier architecture, structure, number or type of hyper-parameters, activation
function, node weights, etc. Such an environment is considered to be a black-box
system and the type of attacks are called black-box attacks. The adversary need
not know the internal details of the system to exploit and compromise it [18].

Generally, in order to attack the model, in a black-box learning setting, the
adversary attempts to generate adversarial examples, which are then transferred
from the substitute classifier F to the target classifier Ttarget, in an effort to suc-
cessfully distort the classification of the output labels [8]. The intention of the
attacker is to train a substitute classifier in a way that is to mimic or simulate
the decision space of the target classifier. For the latter purpose, the attacker
continuously updates the substitute learning model and queries the target clas-
sifier (represented by the Oracle) for labels to train the substitute model, craft
adversarial examples and attack the black-box target classifier.

Generally, the model being targeted is a multi-class classifier system, other-
wise known as the Oracle O. Querying the Oracle represents the only capability

23



which the attacker possesses. Querying the Oracle O for input x, which repre-
sents the only capability available to the attacker, as in the black-box model no
access to the Oracle internal details is possible [18]. The goal of the adversary is
to produce a perturbed version of any input x, known as an adversarial sample
after modification, denoted x∗. This represents an attack on the integrity of the
classification model (oracle) [18]. What the adversary attempts to do is solve
the following optimization problem to generate the adversarial samples, as seen
below:

x∗ = x + arg min{z : Ô(x + z) 6= Ô(x)} = x + δx

The adversary must able to solve this optimization problem by adding a
perturbation at an appropriate rate with δx, to avoid human detection. The
magnitude ε of the rate must be generated in such a way with the least per-
turbation possible in δx to influence the classifier, as well remain undetected
by a human [18]. This is considered a hard optimization problem, since find-
ing a minimal value to δx is no trivial task. Further more, removing knowledge
of the architecture and training data makes it difficult to find a perturbation
that satisfied the condition for successful adversarial examples secretion, where
O{x + δx} = O{x} [18].

6.8 Transferability and Black-Box Learning Systems

Adversarial Transferability is critical for black-box Attacks, to say the least. In
fact black-box systems are dependent on its success. In [25], it is suggested that
the adversary can build a substitute training model F with synthetic labels S0

collected by observing the labeling of test samples by the Oracle O, despite the
DNN model and dataset being inaccessible. The attacker can then build a sub-
stitute model F from what he learns from O. The attacker will can then craft
adversarial samples that will be misclassified by the substitute model F [16].
Now that the attacker has approximated the knowledge of the internal architec-
ture of F, he can use it to construct. For as long as adversarial transferability
holds between F (S0) and Ttarget. adversarial examples misclassified by F will
be misclassified by the target as well. In our paper, we find a way to re-channel
adversarial transferability and prevent an attack. We plan to accomplish the
latter via deception. It was Papernot in [18] [17], who proposed that transfer-
ability can be used to transfer adversarial examples from one neural network to
the other that share a common purpose or task, yet are dissimilar in network
architecture. Transferability is essential for the success of black-box attacks on
deep neural nets, which is due to the limitations imposed on the adversary, such
as lack of architecture, model and training dataset knowledge. Even with lim-
ited knowledge, the adversary with the aid of the transferability property in the
adversary’s armaments, the adversary can train a substitute model and generate
transferable examples, then transfer them to the unprepared target model, mak-
ing the victim’s trained model vulnerable to attack [26]. There has been much
work focused on the abilities possessed by adversarial examples, and its abil-
ity to transplant itself between machine-learning techniques (DNN, CNN, SVM,

24



etc.). Work, namely in [3] [14] [18], all reached the same conclusion - adversar-
ial examples will transfer across different models trained on different dataset
implementations, with different machine-learning techniques.

6.9 Honeypots

A honeypot can be thought of as a single or group of fake systems to collect intel-
ligence on an adversary, by inducing him/her to attack it. A honeypot is meant
to appear and respond like a real system, within a production environment. How-
ever, the data contained within the honeypot is both falsified and spurious, or
better understood as fake. A honeypot has no real production value, instead its
functionality is meant to record information on malicious activity. In the scenario
that it should become compromised it contains no real data and therefore poses
no threat on the production environment [13] [23]. As mentioned, honeypots
can be deployed with fabricated information, this can be an attractive target to
outside attackers, and with the correctly engineered characteristics can be used
to re-direct attackers towards decoy systems and away from critical infrastruc-
ture [7]. As mentioned above, honeypots have a wide array of enterprise appli-
cations and uses. Currently, honeypot technology has been utilized in detecting
Internet of Things (IoT) cyberattack behavior, by analyzing incoming network
traffic traversing through IoT nodes, and gathering attack intelligence [4]. In
robotics, a honeypot was built to investigate remote network attacks on robotic
systems [10]. Evidently, there is an increasing need to install red-herring systems
in place to thwart adversarial attacks before they occur, and cause damage to
production systems. One of the most popular type of honeypots technologies
witnessing an increase in its popularity is High-Interaction Honeypots (HIHP).
This type of honeypot is preferred, since it provides a real-live system for the at-
tacker to be active in. This property is valuable, since it can potentially capture
the full spectrum of attacks launched by adversaries within the system. It allows
to learn as much as possible about the attacker, the strategy involved and tools
used. Gaining this knowledge allows security experts to get insight into what
future attacks might look like, and better understand the current ones.

25


