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Abstract. Leakage-resilient encryption is a powerful tool to protect
data confidentiality against side channel attacks. In this work, we in-
troduce a new and strong leakage setting to counter backdoor (or Trojan
horse) plus covert channel attack, by relaxing the restrictions on leakage.
We allow bounded leakage at anytime and anywhere and over anything.
Our leakage threshold (e.g. 10000 bits) could be much larger than typical
secret key (e.g. AES key or RSA private key) size. Under such a strong
leakage setting, we propose an efficient encryption scheme which is se-
mantic secure in standard setting (i.e. without leakage) and can tolerate
strong continuous leakage. We manage to construct such a secure scheme
under strong leakage setting, by hiding partial (e.g. 1%) ciphertext as
secure as we hide the secret key using a small amount of more secure
hardware resource, so that it is almost equally difficult for any adversary
to steal information regarding this well-protected partial ciphertext or
the secret key. We remark that, the size of such well-protected small por-
tion of ciphertext is chosen to be much larger than the leakage threshold.
We provide concrete and practical examples of such more secure hard-
ware resource for data communication and data storage. Furthermore,
we also introduce a new notion of computational entropy, as a sort of
computational version of Kolmogorov complexity. Our quantitative anal-
ysis shows that, hiding partial ciphertext is a powerful countermeasure,
which enables us to achieve higher security level than existing approaches
in case of backdoor plus covert channel attacks. We also show the rela-
tionship between our new notion of computational entropy and existing
relevant concepts, including All-or-Nothing Transform and Exposure Re-
silient Function. This new computation entropy formulation may have
independent interests.
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1 Introduction

Leakage resilient cryptography has been studied for over a decade, aiming to
counter side channel attacks, among other goals. Existing works on leakage re-
silient cryptography typically impose some restrictions on when, where, or what
can be leaked. Some work assumes that there exits a leakage-free setup phase.
Some works assume there exists a secure hardware device, such that any com-
putation inside this secure device is leakage-free. If some secret key is stored in
such secure device and never leaves from it, then such secret key is assumed to
be leakage-free. Some works only allow leakage on secret key. Furthermore, some
works consider bounded leakage with a very small upper bound—O(Poly(log λ))
where λ is the security parameter.

1.1 Background in Existing Leakage Models

1.1.1 Bounded Retrieve Model The bounded retrieve model [4,2,14,16] as-
sumes the total amount of leaked information during the lifetime of the attacked
system, is upper bounded by a constant `, which could be as large as gigabytes.
An existing approach [4,14] is to purposely make the shared secret key size sig-
nificantly larger than the leakage upper bound—` (e.g. ≥ 2`+ λ where λ is the
security parameter). In order to make the computation as fast as the case of
short secret key, this approach assumes a leakage-free phase, during which, one
party (say, Alice) can randomly extract a short session key from the large shared
secret key using a random seed. The other party (say, Bob) of communication
can re-generate the same short session key from the same shared large secret key
after receiving the same random seed.

It is easy to see, under continuous bounded leakage setting, any static secret
key can be leaked one bit by one bit, and pseudorandomness technique cannot
be applied directly since short seed could be (partially) leaked. Furthermore, we
allow O(λ) bits leakage such that leakage threshold could be larger than secret
key size (e.g. the short session key in the above paragraph), thus the whole block
cipher key (e.g. 128 bits AES key) could be leaked. Therefore, bounded retrieve
model does not satisfy our goal.

1.1.2 A leakage-free time period during the computation process of
cryptography primitive Alwen, Dodis and Wichs [3] proposed several leakage
resilient cryptography primitives with flexible (and possibly very large) key size.
A key idea in their authenticated key agreement scheme, is: (1) Generate many
keys in the setup; (2) and during a leakage-free time period, the sender and
receiver will randomly sample a subset of keys, and use them to authenticate each
other; and then establish a short shared session key. As long as a constant fraction
of all keys are unknown to the adversary after bounded leakage, a random subset
of keys contains at least one unknown key with very high probability. After that,
standard cryptography primitives are applied with the short secure session key
(e.g. AES).
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In our leakage setting, there will be no leakage-free time period and any short
value (e.g. AES key) could be leaked. So we have to seek new approaches.

1.1.3 Secret Key never leaves from Secure Hardware Device The
computation power of secure hardware devices (e.g. Trusted Platform Module)
may not be able to match the power of desktop Intel/AMD CPU. Furthermore,
there seems no evidence to show that the vendors of secure hardware device are
more trusted than vendors of other component (e.g. CPU, GPU, RAM, hard
disk, OS, web browser, virtual machine software, etc) in a computer system.

1.1.4 Randomness Extractor One may consider to extract a short block
cipher (e.g. AES) key from a long secret key and then encrypt the message
using the short block cipher directly. Assuming leakage only occurred before the
randomness extractor was applied, (e.g. as the setting of [4,14]), this method
will work. But in our setting, we do not make such assumption, and instead we
allow bounded leakage at any time.

1.1.5 Memoryless Leakage Oracle An essential difference between leakage
oracle in side channel attack in related works and leakage oracle in Trojan horse
malware plus covert channel attack in this paper, is that, whether the leakage
oracle has cache memory and is allowed to access history data. Some recent works
in leakage resilient cryptography [24,8,7] assumes that: (1) for each invocation
of cryptography primitive, the leakage threshold is smaller than secret key size;
and (2) leakage oracle only takes input from current status of the cryptography
computation, and is not allowed to access historical status. They can achieve
security by refreshing the secret key frequently (together with other techniques).
Imagine a simplified example [24]: To encrypt the i-th message, one may adopt a
fresh 256-bit encryption key ki := SHA256(ki−1), and the adversary is allowed to
learn only a single bit L(ki) ∈ {0, 1} over the key ki. With all leaked information
{L(kj) : j ∈ [0, i]}, a polynomial-time adversary seems not be able to learn some
useful knowledge about any secret key. However, in case of Trojan horse plus
covert channel attack in this paper, the Trojan horse malware may keep an old
key k0 in a local cache memory, and send out one bit per every invocation of
encryption scheme via covert channel. So after encrypting |k| = 256 messages,
all of 256 bits of k0 could be sent out to a remote adversary, who can compute
every ki from k0. With all ciphertexts (which can be obtained via eavesdropping,
without resorting to leakage oracle), the adversary can decrypt and recover all
plaintexts. Thus 256 bits leakage leads to exposure of everything—all plaintexts
and (future) secret keys. Our new security formulation in this work is aiming to
prevent such kind of leakage amplification.

It will be interesting to study the leakage resilient cryptography with ad-
versary who has limited leakage bandwidth (say ` bits per invocation of crypto
primitive) and limited cache memory (say w bits memory). In this work, we ac-
tually do not assume any upper bound in the size of cache memory. Since covert
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channel with large bandwidth and/or Trojan horse with large cache memory,
may be more easily captured or prevented by existing solution (e.g. anti-virus
software and intrusion detection system, Trojan-Resilient hardware [17,10]), it
is reasonable to put some small upper bound in values of ` and w. We leave this
as an open problem.

1.2 Our Contributions

The main contributions of this work can be summarized as below.

1.2.1 New Leakage Setting Since existing leakage settings does not fit for
our goal, we present a new strong leakage model, to capture the threat of back-
door or Trojan horse and covert channels in computer hardware/software sys-
tems. We allow bounded (e.g. 10000 bits) leakage at anytime and anywhere and
over anything, with only two restrictions on the adversary: (1) the adversary
algorithms are efficient (probabilistic polynomial time); (2) the bandwidth of
the covert channel is bounded from the above. By our knowledge, all existing
works designed for leakage settings in Section 1.1 are trivially broken under our
leakage setting, since the Trojan horse could observe every step of computation
of the victim program (e.g. an encryption program) and then steal the entire
short private key 3.

1.2.2 Notion of Steal-Entropy We propose a new notion called “steal-
entropy”, as a sort of computational version of Kolmogorov complexity. With
this “steal-entropy”, we quantitatively analyse the advantage of our approach
over existing works. Our formulation is non-trivial and has to resolve several
important issues. More details are provided in our full version [30] (1) Unlike
Shannon-Entropy, Yao-Entropy and Hill-Entropy are defined over distribution
of random variable, and Kolmogorov complexity is defined over string, our steal-
entropy will be defined over an algorithm which converts the distribution of
input random variable to the distribution of output random variable. (2) Statis-
tical or computational indistinguishability notion (e.g. semantic security under
CPA/CCA/CCA2 attack mode) is inappropriate in our leakage setting, since
a single bit of arbitrary leakage will help an adversary to win the guess-game
trivially. (3) Kolmogorov complexity is uncomputable in general, but in our for-
mulation, we should avoid to define any uncomputable function. As a result,
unlike existing variant formulations of entropy, it is hard to define our steal-
entropy as a single scalar value (More discussion is available in our full version).
Instead, we will give an upper bound and a lower bound for the steal-entropy of
a given algorithm. To show a program has poor steal-entropy, we need provide a
small upper bound on the steal-entropy of this program; to show a program has

3 We emphasize that, the white box cryptography [6,19] using program obfuscation,
which claims to protect secret key from attackers with direct control of the encryption
device, is prohibitively impractical, even for a simple function [13].
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high steal-entropy, we need provide a large lower bound on the steal-entropy of
this program.

1.2.3 Construction We propose an efficient encryption scheme and demon-
strate that hiding partial ciphertext could be a powerful tool to defeat strong
leakage attack. We construct our encryption scheme using Vandermonde ma-
trix and evaluate the steal-entropy of the proposed scheme without relying on
any hard problem assumption. Informally speaking, our encryption scheme will
ensure that, without complete ciphertext, the attacker obtains very limited in-
formation about the plaintext, even if the attacker has stolen a bounded amount
of message (e.g. the entire short private key) of his/her choice. We will compare
our solution with some related approaches, including All-or-Nothing Transform
and White-Box Cryptography, both of which could not satisfy our goal.

The proposed solution will be used to construct a “virtually isolated net-
work” [31]. We discuss details later in Section 2.

1.3 Organizations

The rest of this paper is organized in this way: Section 2 gives an overview of
our work, including our leakage setting, formulation of steal-entropy, and our
proposed construction of leakage/steal-resilient encryption scheme. In addition
to the related works already discussed in Section 1 and 2, Section 3 discusses more
related works. We present our formal formulation of steal-entropy in Section 4,
propose and analyse our encryption scheme in Section 5. We conclude this paper
in Section 6. A full version with more details is available online [30].

2 Overview of Our Work

2.1 Our Leakage Setting

2.1.1 Motivation of New Leakage Setting In this paper, we aim to
counter not only side channel attack but also covert channel attack. Nowadays,
computer systems become so complex and consist of a lot of software/hardware
components which are designed, manufactured and sold by various companies
from various countries. It is definitely not a trivial task for PC users to check
whether some backdoor program or malware (e.g. Trojan horse) has been planted
inside his/her PC hardware/software system. The well-known “Dual Elliptic
Curve Deterministic Random Bit Generator” (Dual EC DRBG) backdoor 4 demon-
strates that the potential threat from backdoor is not that far away from every
computer user. Another serious threat is software Trojans horse or even hard-
ware Trojan horse 5. The backdoor or Trojan horse malware may observe the
victim’s computer system to gather information and send collected (possibly
compressed) information out via a covert channel or subliminal channel.

4
https://en.wikipedia.org/wiki/Kleptography and https://en.wikipedia.org/wiki/Dual_EC_DRBG

5
http://spectrum.ieee.org/semiconductors/design/stopping-hardware-Trojans-in-their-tracks
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Facing such threats from backdoor and Trojan horse, in this work, we have
to revise the existing leakage setting: (1) Theoretically, backdoor or Trojan horse
programs could be planted by some software/hardware vendor and they exist in
victim’s computer from the very beginning. So it might not be appropriate to
assume a leakage-free time period. (2) Possibly, the backdoor program might be
planted by vendors of the secure hardware device and the assumption of leakage-
free secure hardware device is hard to validate. (3) The backdoor or Trojan horse
malware may have their own storage buffers, so history data can be buffered and
then leaked 1 bit by 1 bit via the covert channel (thus Pereira, Standaert and
Vivek [24] would be broken trivially as discussed in Section 1.1.5).

2.1.2 New Leakage Setting In general, we allow efficient leakage with
bounded bandwidth at anytime and anywhere and over anything. The only two
restrictions on leakage are: (1) The leakage amount of each encryption (i.e. the
bandwidth of covert channel) is bounded (e.g. O(λ)). In this paper, we are in-
terested in medium value of leakage threshold, e.g. tens of thousands bits, which
is much larger than typical private key size (e.g. AES key and RSA private key).
(2) The backdoor or Trojan horse program (i.e. the leakage function) is computa-
tionally bounded (e.g. polynomial time algorithm). Our setting is closer to study
of memory leakage resilient cryptography, and does not follow the assumption
that only computation leaks information [23].

Recall that, in most, if not all, leakage-resilient cryptography research works,
an adversary has two different methods to obtain desired information:

• A cheap method to obtain a large amount of weakly protected information,
for example, eavesdropping ciphertext on communication link.

• An expensive method to obtain a small amount of strongly protected infor-
mation, for example, using side channel attack or Trojan horse malware plus
covert channel attack to obtain partial or full information of the short secret
key.

Typically in existing works, an adversary is assumed to obtain full information
of ciphertext using the cheap method (e.g. eavesdropping), meanwhile subject
to several restrictions on obtaining information of short secret key (e.g. assumed
leakage-free time period or hardware device). Unlike existing works, in this paper,
we impose minimum restrictions on information leakage, and assume that a small
part (e.g. 1% or 0.1%) of ciphertext 6 is as strongly protected as the short secret
key, so that the adversary has to resort to the expensive method (e.g. Trojan
horse and covert channel) to obtain this part of ciphertext. Next, we will support
this assumption with real world examples.

Secure Storage Device. For data storage, we assume there are two categories of
storage: one with small capacity is relatively more expensive, in term of unit

6 The encryption scheme is length-preserving, and the size of ciphertext is equal to
the size of plaintext.
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price, but much more secure; the other with large capacity is cheaper but inse-
cure. In case that a user wish to backup large size sensitive historical data in
cloud storage server, but did not trust the cloud in data confidentiality. Then
this user’s local offline storage device, which is physically disconnected from
any computers and Internet, could be an example of the former, and the cloud
storage 7 could be an example of the latter.

Secure Communication Link. For data transmission, we assume there exist two
categories of communication channels, one with small bandwidth is very expen-
sive but much more secure, such that an adversary cannot obtain the transmitted
data with low cost (e.g. eavesdropping); the other with large bandwidth is cheap
but insecure, such that an adversary can obtain all transmitted data with low
cost. The example of former could be satellite link (or even neutrinos commu-
nication in the future), which is relatively more difficult to eavesdrop, and the
example of latter could be Internet. Another example is “virtually isolated net-
work” 8, recently proposed by Xu and Zhou [31], which is a hybrid network with
two communication channels: one is a physically isolated network with small
bandwidth, and the other is Internet with large bandwidth. Their work [31]
combines these two channels with unidirectional network links (a.k.a data diode
or air gap), so that the isolated network will be still always physically isolated
from Internet.

Our strategy is to enhance security level of the large amount of cheap but
insecure hardware resource by leveraging on small amount of expensive but more
secure hardware resource, essentially creating a hybrid effects in security. We aim
to prevent the adversary from eavesdropping full information of our ciphertext.

2.2 Notion of Steal-Entropy

Unlike previous leakage formulation, we attempt to formalize security in leakage
setting from a different angle. We try to answer a very important question:
“At least how many bits should the adversary steal in order to obtain
the desired secret information?”

In this work, we are concerning how many bits the adversary has to obtain
using the expensive method, in order to obtain full or partial information of
the plaintext. Informally, we may call this “minimum but sufficient number of
leaked/stolen bits” which will lead to compromise of secret plaintext, as the
steal-entropy of the encryption algorithm.

7 Note: (1) Many cloud storage servers provide a certain amount (e.g. 15GB) of free
cloud storage for individual users; (2) the cost of offline local storage should include
not only hardware purchase cost but also hardware maintenance and storage cost
(i.e. keep the harddisk drive in a proper physical environment for a long time).

8 Actually, the motivation of this work is to provide an extremely secure (informally,
close to physically isolated network) communication method in this “virtually iso-
lated network” [31]. Here we choose strong leakage resilience against potential back-
door as our formal definition of “extremely secure”.
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Let P (e.g encryption algorithm/program) denote the victim algorithm or
program. In our formulation, an adversary chooses two algorithms, denoted with
steal algorithm S and recovery algorithm R. The steal algorithm S is given oracle
access to the whole computation process of P, including any internal states (e.g.
secret keys, random seeds, input and any computation steps). Then the steal
algorithm S is allowed to pass a short message, which is at most ` bits, to the
recovery algorithm R, which attempts to output desired secret information. If
the recovery algorithm R is able to output the desired secret information with
probability close to 1, with value of ` much smaller than the size of desired secret
information, then we say the victim algorithm P has very low steal-entropy rate.
In this work, we are interested in medium value of leakage threshold ` (e.g. tens
of thousands), which is larger than typical secret key length, but could be much
smaller than typical ciphertext length. Our notion of “steal-entropy” could be
treated as a computation version of Kolmogorov complexity.

2.2.1 Steal-Entropy in Input or Output Pseudorandom number genera-
tors, pseudorandom function and encryption are important cryptography primi-
tives applied to protect data confidentiality. For an algorithm P similar to pseu-
dorandom number generator and pseudorandom function, we are interested to
ask a question: Assuming a Trojan horse malware is observing the computation
process of algorithm P upon a randomly chosen input x, at least how many bits
should the Trojan horse malware steal and send out, in order to allow a remote
attacker to recover the output P(x) of the algorithm P? To address this ques-
tion, we define a notion called “Steal-Entropy of an algorithm in Output”. Due
to space constrain, we will leave the formal definition of this notion in the full
version of this paper.

For algorithm P similar to encryption scheme, we are interested to ask an-
other question: Assuming a Trojan horse malware is observing the computation
process of algorithm P upon a randomly chosen input x, at least how many bits
should this Trojan horse malware steal and send out, in order to allow a remote
attacker to recover the input x, where this remote attacker has access to the out-
put 9 P(x)? To address this question, we define a notion called “Steal-Entropy of
an algorithm in Input”. In addition, to deal with partial information protection,
we define a notion called “Strong Steal-Entropy of an algorithm”.

2.2.2 Relation with Existing Similar Notions We also formally analyze
the differences between our notion of steal-entropy with existing similar no-
tions, including Yao-Entropy [32], Hill-Entropy [20], Information Dispersal Algo-
rithm [25], All-or-Nothing Transform [27], and Exposure Resilient Function [11].
We manage to separate our proposed steal-entropy from all of these existing
formulations. More details are in our full version [30].

9 Usually, it is assumed that the adversary has access to the ciphertext.
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2.3 Our Approach

When the leakage threshold ` is larger than typical secret key size, most ex-
isting encryption schemes and leakage resilient encryption schemes (which only
tolerates leakage upto O(poly log λ) < λ bits, where λ is the security parameter)
would fail to protect data confidentiality, since in typical setting, an adversary
could obtain all ciphertext with low cost (e.g. eavesdropping), and the secret
decryption key could be stolen by Trojan horse malware and delivered to the
remote adversary via covert channel.

Facing such stringent threat of medium size of arbitrary information leakage,
two possible directions are: (1) Construct novel encryption scheme with larger
flexible key size, say the encryption/decryption key size could be a user-tunable
parameter, and range from hundreds bits to hundreds of thousands bits or even
more. We will report our work in this direction in a separate paper. We remark
that Alwen, Dodis and Wichs [3] does not satisfy our purpose, since this work [3]
eventually extracted a short session key from arbitrary large size long term secret
key, where this extracted short session key could be stolen under our leakage
setting. (2) Break the assumption that the adversary could easily obtain all
ciphertext. Indeed, this work will attempt to hide a small portion of ciphertext
using more secure hardware resource, so that the adversary has to resort to the
expensive method to steal information about this small portion of ciphertext, in
a similar way that he/she steals the secret key.

2.3.1 Randomness Source Any static secret information might be stolen
one bit by one bit, if backdoor or Trojan horse exists. To defeat continuous leak-
age/steal with buffer storage, we have to keep investing more and more random-
ness. However, it is expensive to generate cryptographically secure randomness.
In our solution, we will exploit the fact that plaintext itself is naturally a sort of
random source to the view of adversary, saving the cost to generate true random-
ness. We protect a small portion of the ciphertext using more secure hardware
resource, so that this portion of ciphertext actually acts as another “secret key”,
which is derived from the plaintext and will change naturally with plaintext, to
the view of adversary.

2.4 Our Construction

Our leakage setting provides much more freedom and power to adversary, com-
pared to existing works on leakage-resilient cryptography. Consequently, the two
very important classical tools, namely computational indistinguishability and
(statistical or computational) randomness extractor, are hardly to be applied
under our formulation. In this work, we have to resort to information theory
techniques.

Definition 1 (Blockwise Uniform Distribution) Let y = (y1,y2, · · · ,yn),
where yi ∈ {0, 1}ρ for each i ∈ [1, n]. We say y follows (ζ, ρ)-Blockwise-Uniform
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Distribution, if for any subset S = {i1, i2, · · · , iζ} ⊂ [1, n] with |S| = ζ and
i1 < i2 < i3 < · · · < iζ , we have the joint Shannon-entropy

HShannon(yi1 ,yi2 , · · · ,yiζ ) = ρζ. (1)

That is, any subset of ζ distinct blocks yi will have joint Shannon entropy equal
to their total bit-length (i.e. entropy rate equal to 1).

Remark 1. When ρ = 1 sand ζ = n, then (ζ, ρ)-Blockwise-Uniform Distribution
is identical with uniform distribution.

In this work, we will construct an invertible algorithm P using Vandermonde
matrix, such that its inverse algorithm P−1, satisfies this property:

Property 1 Let Ctx0 and Ctx1 be as in Figure ??, and assume the bit-length
|Ctx1| = τ · |Ctx0| = τρζ. If Ctx0 is independently and uniformly randomly
distributed over {0, 1}ρζ , then the output x = P−1(Ctx0, Ctx1) follows (ζ, ρ)-
Blockwise-Uniform Distribution, regardless of value of Ctx1 (e.g. this value could
be fixed to any given bit-string from its domain).

Suppose somehow an attacker in Figure ?? is able to output ζ bits among xi’s,
say xij , j ∈ [1, ζ]. Then these ζ bits xij ’s will reside in at most ζ distinct ρ-bit
blocks in bit-string x. Since any subset of ζ blocks of x will have Shannon entropy
rate equal to 1 (i.e. entropy equal to the bit-length), the collection of these ζ
bits xij ’s will have exactly ζ bits Shannon entropy. Therefore, the adversary has
to steal at least ζ bits message via the covert channel, as desired. Apparent, the
above proof is not tight with a multiplicative loss of factor ρ. We leaf the tight
proof with better security parameters in future work.

3 Related Works

The related works in leakage resilient cryptography have been discussed in Sec-
tion 1.1. Here we discuss other related works.

Symmetric encryption scheme (e.g. AES, Blowfish 10, and Triple DES 11.)
could be the most widely adopted cryptographically secure primitive to protect
data confidentiality, especially for large volume of data. AES [12] is a typical
example of symmetric encryption scheme, and has been actively adopted in
industry and research area due to its security and efficiency for more than one
decade.

In additional to encryption techniques, another well-known cryptographic
primitive that can be used to protect data confidentiality is “secret-sharing”
scheme invented by Shamir [28]. Compared to encryption scheme (e.g. AES [12])
which can only achieve conditional security, secret-sharing scheme may achieve

10 https://www.schneier.com/academic/blowfish/
11 http://csrc.nist.gov/publications/nistpubs/800-67-Rev1/SP-800-67-Rev1.

pdf
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unconditional security (also known as information-theoretic security), assuming
the adversary cannot collect sufficient number of shares.

Despite its strong security, Shamir’s secret sharing scheme has significant
drawbacks when protecting data confidentiality: (1) for (t, n)-secret sharing scheme,
the storage overhead is as large as (n − 1) times of size of the secret (i.e. the
plaintext to be protected); (2) the reconstruction [22] (or decoding) process is
not as efficient as DES or AES.

Rabin [26] proposed “information dispersal algorithm” with zero storage
overhead, such that the sum of sizes of all shares is equal to the size of se-
cret message size. His solution is conceptually simple: Let row vector m =
(m0,m1, . . . ,mn) be the secret message. Choose an invertible n by n matrix
T with inverse matrix T−1. By multiplying row vector m with matrix T, we
obtain the n shares c = (c0, c1, . . . , cn−1) = m × T. Accordingly, the original
secret message m can be recovered by matrix multiplication m = c × T−1.
Othman and Mokdad [9] proposed to protect communication confidentiality by
sending each share of message in distinct network path from the same sender to
the same receiver.

Alternatively, Krawczyk [21] attempted to make each share shortened, by
dividing ciphertext of the long secret message into n pieces, and then apply
Shamir’s secret sharing scheme over the encryption key. Thus, the storage over-
head is linear in short encryption key size and is a fraction of secret message
size.

4 Steal-Entropy: How many bits should be stolen to
recover the secrete information?

In this section, we propose the notion of “Steal-Entropy”. Unlike traditional en-
tropy concepts (e.g. Shannon-Entropy, Yao-Entropy 12, Hill-Entropy, etc) which
are defined over random variable with a certain distributions, “steal-entropy”
will be defined over algorithms which convert input distribution to output dis-
tribution. Our notion of “steal-entropy” could be considered as a computational
version of Kolmogorov Complexity [5], which is quoted in full version.

4.1 Steal-Entropy of an Algorithm in Input

Definition 2 (Steal-Entropy of an Algorithm in Input ) Let P : {0, 1}n →
{0, 1}m be a deterministic 13 single-input algorithm. Let ε ∈ [0, 14 ). Let A be a
t-adversary associated with a pair of algorithms (S, R), such that

• both the steal (or stealage) algorithm S and the recovery algorithm R are
probabilistic algorithms within time t, and

12 Shannon-Entropy is information-theoretical. Both Yao-Entropy and Hill-Entropy are
computational variants.

13 When all random coins are treated as a part of input, any probabilistic algorithm
will become deterministic.
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• for any non-negative integer `, the steal algorithm

SO(P(x))(`) ∈ {0, 1}≤` \ {EmptyString}

with oracle access to P, is allowed to observe all internal states during com-
putation process of algorithm P upon an input x, and outputs at most ` bits
non-empty steal-message, and

• the recovery algorithm R takes as input the value P(x) and the steal-message
generated by S(`), and attempts to guess the value x.

We make the following definitions.

• We define the advantage of A against P w.r.t. input x ∈ {0, 1}n as below

AdvinA(`),P(x) = Pr

[
R

(
SO
(
y←P(x)

)
(`), y

)
= x

]
(2)

where the probability is taken over all random coins of algorithms S and R.
• We say the infimum of Steal-Entropy in Input of algorithm P is at

least ξ, denoted as inf Sinε,t(P) ≥ ξ, if for any t-adversary A, for any non-
negative integer ` ≤ ξ,

Pr
x
R←{0,1}n

[
AdvinA(`),P(x) ≤ 1

2ξ−`
+ ε

]
≥ 1− ε. (3)

• We say the supremum of Steal-Entropy in Input of algorithm P is
at most ξ, denoted as supSinε,t(P) ≤ ξ, if for some t-adversary A,

Pr
x
R←{0,1}n

[
AdvinA(ξ),P(x) ≥ 1− ε

]
≥ 1− ε. (4)

• We say Sinε,t(P0) ≥ Sinε,t(P1) (or equivalently Sinε,t(P1) ≤ Sinε,t(P0)), if the fol-
lowing two equations hold

inf Sinε,t(P0) ≥ inf Sinε,t(P1); sup Sinε,t(P0) ≥ supSinε,t(P1). (5)

• We say Sinε,t(P0) � Sinε,t(P1) (or equivalently, Sinε,t(P1) � Sinε,t(P0)), if the
following equation holds

inf Sinε,t(P0) ≥ supSinε,t(P1). (6)

Proposition 1 If P is an invertible algorithm, and the inverse algorithm P−1

has running time ≤ t, then inf Sinε,t(P) = supSinε,t(P) = 0.

When the encryption/decryption key is fixed, an encryption algorithm Enc
is an invertible algorithm from plaintext to ciphertext. Before any information
leakage, an adversary may have knowledge of the whole family {Enck}k←KGen(1λ)

and do not know which one is picked from this family of permutation algorithms.
By stealing the key k, an adversary is able to recover plaintext from ciphertext.
This simple fact is summarized as below.

Proposition 2 For any PPT encryption scheme (KGen,Enc,Dec) and for any
key k generated by KGen, we have supSinε,t

(
Enck

)
≤ |k|, where ε = 0, and t =

poly(·).
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4.2 Discussion

An interesting question is to evaluate the steal-entropy for classical hard prob-
lems: factorization problem and discrete log problem, where thousands (say 2048)
bits long key provides roughly 80 bits security level. PFact(p, q) = p × q where
both p and q are primes with equal bit-length. PLog(x) = gx mod p where both
g and p are public constants, p is a prime and g is a generator modulo p. Will
the steal-entropy of these algorithm be closer to their key size (i.e. thousands)
or security level (i.e. 80)? We leave it as an open problem.

4.3 Strong Steal-Entropy in Input

Informally, after stealing ` bits arbitrary message, the adversary should be unable
to output ` + ∆ bits information about the secret value, and there will be no
leakage amplification.

Definition 3 (Strong Steal-Entropy of an Algorithm in Input) Let P :
{0, 1}n → {0, 1}m be a deterministic 14 single-input algorithm. Let ε ∈ [0, 14 ).
Let A be a t-adversary associated with a pair of algorithms (S, R), such that

• both the steal (or stealage) algorithm S and the recovery algorithm R are
probabilistic algorithms within time t, and

• for any non-negative integer `, the steal algorithm

SO(P(x))(`) ∈ {0, 1}≤` \ {EmptyString}

with oracle access to P, is allowed to observe all internal states during com-
putation process of algorithm P upon an input x, and outputs at most ` bits
non-empty steal-message, and

• the recovery algorithm R takes 2 inputs: (1) the steal-message generated by
S(`), and (2) the value P(x), and outputs two values: (1) x̄ ∈ {0, 1}n, which
is a guess of x, and (2) a subset of indices Ix ⊂ [1, n].

We introduce the following definitions.

• For any adversary A with steal algorithm S and recovery algorithm R, let us
define the set Gmsg of good steal-message as below

GR
msg(`,∆, x, β)

def
=

Msg ∈ {0, 1}≤` :
(x̄, I)← R(Msg,P(x));
|I| ≥ `+∆;
∀i ∈ I,Pr[x̄[i] = x[i]] ≥ β

 (7)

where the probability is taken over the random coins of R.

14 When all random coins are treated as a part of input, any probabilistic algorithm
will become deterministic.
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• Similarly, let us define the set Gx of good input x as below

GS,R
x (`,∆, α, β)

def
=
{
x ∈ {0, 1}n : Pr[SO(P(x))(·) ∈ GR

msg(`,∆, x, β)] ≥ α
}
(8)

where the probability is taken over the random coins of S.
• We say the supremum of Strong Steal-Entropy in Input of algorithm
P is at most ξ, denoted as supSsinε,t (P) ≤ ξ, if for some t-adversary A =
(S,R),

Pr
x∈R{0,1}n

[x ∈ GS,R
x (ξ, ς(ξ, ε) + 1− `, 1− ε, 1− ε)] ≥ 1− ε (9)

where function ς(·, ·) is defined as below 15

ς(`, ε)
def
=

{
`, if 0 ≤ ε < 2−(`−1)

`+ 1, if 2−(`−1) ≤ ε < 1
4 .

(10)

• Let ε ≥ λ−c where c could be any positive integer. We say the infimum of
Strong Steal-Entropy in Input of algorithm P is at least ξ, denoted as
inf Ssinε,t (P) ≥ ξ, if for any t-adversary A = (S,R), for any ` with ς(`, ε) =
`+ 1 < ξ,

Pr
x∈R{0,1}n

[x ∈ GS,R
x (`, ς(`, ε) + 1− `, 0.5 + ε, 0.5 + ε)] ≤ 0.5 + negl(λ), (11)

where λ is the security parameter, and negl(·) denotes some negligible func-
tion.

• We say Ssinε,t (P0) ≥ Ssinε,t (P1) (or equivalently Ssinε,t (P1) ≤ Ssinε,t (P0)), if the
following two equations hold

inf Ssinε,t (P0) ≥ inf Ssinε,t (P1); sup Ssinε,t (P0) ≥ supSsinε,t (P1). (12)

• We say Ssinε,t (P0) � Ssinε,t (P1) (or equivalently, Ssinε,t (P1) � Ssinε,t (P0)), if the
following equation holds

inf Ssinε,t (P0) ≥ supSsinε,t (P1). (13)

Lemma 1 (Amplification) If there exists some t-adversary A0 = (S0,R0),
such that for any positive integer c, and for any ε ≥ λ−c, we have

Pr
x∈R{0,1}n

[x ∈ GS0,R0
x (`, ς(`, ε) + 1− `, 0.5 + ε, 0.5 + ε)] ≥ µ (14)

15 The reason behind the definition of ς(`, σ) (i.e. Equation 10) is explained with details
in our full version of this paper. Informally speaking, some steal algorithm S(`) is able
to convey almost ` + 1 bits message to R algorithm, since |{0, 1}≤`| ≈ |{0, 1}`+1|.
When the error bound ε ≥ 2−(`−1), we do not care the difference between such
“almost” `+ 1 bits message and actual `+ 1 bits message.

14



then there exists some t ·Θ(1/ε)-adversary A1 = (S1,R1), such that

Pr
x∈R{0,1}n

[x ∈ GS1,R1
x (`, ς(`, ε) + 1− `, 1− negl(λ), 1− negl(λ))] ≥ µ (15)

where λ is the security parameter and negl(·) denotes some negligible function.
(The proof is in our full version [30])

Definition 4 (Strong Steal-Entropy Rate in Input) Let P : {0, 1}n → {0, 1}m
be a deterministic single-input algorithm. We define the infimum and supremum
of steal-entropy rate of algorithm P as

µ⊥
def
=

inf Ssinε,t (P)

n
; µ>

def
=

supSsinε,t (P)

n
(16)

(Note that this is a counterpart notion of “entropy rate” or “leakage rate”.)

Theorem 2 (Separation between Steal-Entropy and Strong Steal-Entropy)
There exists a constant c > 0, such that for any positive integer N , we can con-
struct an algorithm P, such that supSsinε,t (P) ≤ c and inf Sinε,t(P) ≥ N . (Proof is
in our full version [30])

5 Our Proposed Encryption (or Encoding) Scheme

We will describe our proposed encryption scheme in two steps following a mod-
ular design.

5.1 Our Steal-Resilient Encryption (or Encoding) Scheme

Definition 5 (Steal-Resilient Encryption/Encoding) Let Φ = (KeyGen,Encrypt,Decrypt)
be a length-preserving encryption scheme. Let algorithm SuffixΦ be defined as
below

SuffixΦ(k;x) = C1, where k := KeyGen(1λ)

and C0‖C1 := Encrypt(k;x) and |C1| = τ |C0|. (17)

Let n denote the length of plaintext. We say Φ is a δ(n)-steal-resilient encryption
scheme with split-factor τ , if the algorithm SuffixΦ has infimum of strong steal-

entropy rate µ⊥ =
inf Ssinε,t(SuffixΦ)

n ≥ δ(n), where δ(n) ∈ [0, 1] with 1 meaning the
best and 0 meaning the worst, t = O(poly(λ)), and ε ≥ λ−c for some positive
integer c.

We remark that, under our definition, most existing encryption schemes
(including any existing block cipher under any existing mode of operation,
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and All-or-Nothing Transform by Rivest [27], and Leakage resilient encryp-
tion 16 [24,3,18,29,1,15,33]) are poorly δ(n)-steal resilient encryption with δ(n) =
1/Θ(n) approaching to zero when n approaches to infinity.

We found that the linear transformation with Vandermonde matrix is a good
steal-resilient encryption scheme. Let ρ be some positive integer (e.g. 8 or 16 or
32) and GF (2ρ) be a finite field with order 2ρ.

We construct an encryption scheme Φ0 = (KeyGen, Encrypt, Decrypt) as be-
low.
Φ0.KeyGen(1λ)→M

1. Randomly choose a ζ · (1 + τ) by ζ · (1 + τ) Vandermonde matrix 17, and
denote its transpose matrix as M = (Mi,j)i,j∈[1,ζ·(1+τ)], where Mi,j = αij ∈
GF (2ρ) \ {0}. The inverse of matrix M exists and is denoted as M−1.

2. Output M.

Φ0.Encrypt(M;x), where M is a ζ · (1 + τ) by ζ · (1 + τ) matrix and x ∈
GF (2ρ)ζ·(1+τ) is a row vector of dimension ζ ·(1+τ) (equivalently, 1 by ζ ·(1+τ)
matrix)

1. Compute product y := x×M−1 of two matrix x and M−1.
2. Treat y as a bit string with length (1+ τ)ρζ bits, which is the concatenation

of ζ(1 + τ) number of ordered ρ-bits finite field elements.
3. Let y0 be the prefix of y with length equal to ρζ bits.
4. Let y1 be the suffix of y with length equal to τρζ bits.
5. Output (y0,y1).

Φ0.Decrypt(M;y0,y1)

1. Let y be the concatenation of y0 and y1.
2. Parse bit-string y as a row vector of dimension ζ(1 + τ) where each vector

element is from GF (2ρ).
3. Compute matrix product x := y ×M.
4. Output x.

We remark that, any linear transformation with an invertible matrix could con-
stitute an information dispersal algorithm [25], but is unlikely a steal-resilient
encryption.

Our experiments in a Macbook Pro Laptop with Intel i5 CPU (purchased
in 2014) show that the encryption or decryption can be done in 0.037 seconds
(about 21 megabytes per second) with a single CPU core when dimension of M
is 12800 and ρ = 16, τ = 31; and in 0.149 seconds when dimension is 25600 and
ρ = 16, τ = 63.

16 We remark that some of these cited leakage resilient cryptography works actually pro-
pose leakage resilient pseudorandom generator/functions, instead of an encryption
scheme. These pseudorandom generator/functions can be converted into encryption
scheme using classical methods. These resulting encryption schemes will be a poor
steal-resilient encryption.

17 The matrix row/column index starts with either zero or one, makes no essential
difference to the property of Vandermonde matrix.
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Theorem 3 Let x := y ×M be as stated in the above scheme. Then x follows
(ζ, ρ)-Blockwise-Uniform distribution, as defined in Definition 1 on page 9. More
precisely, parse x as a sequence of elements (x1, x2, · · · , xi, · · · , xζ(1+τ)) with
each element xi ∈ GF (2ρ). If the last τ · ζ elements of y is given and fixed,
and the first ζ elements of y uniformly distributes over {0, 1}ρζ , then any tuple
of ζ elements (· · · , xij , · · · )j∈[1,ζ], with distinct indices ij’s, will have exactly
ρ · ζ bits Shannon-Entropy (i.e. the Shannon-Entropy rate is 1). Proof is in full
version [30].

Corollary 4 The proposed scheme Φ0 is a δ(n)-steal-resilient encryption, with
δ(n) = 1

ρ(τ+1) independent on plaintext length n = ρζ(1+τ), and inf Ssinε,t (SuffixΦ0
) ≥

ζ. We remark that both ρ and τ are system parameters independent on plaintext
length n. (Proof is in our full version [30])

We observe that, in the proof of Theorem 3, we only require the first ζ rows of
matrix M satisfy the special Vandermonde matrix property. Therefore, we could
simply tweak the rest rows of matrix M, in order to speed up the decryption
performance.

Corollary 5 In algorithm Φ0.KeyGen, change the last τζ rows of matrix M
to a sparse matrix, such that M is still invertible. Then the resulting variant
version of Φ0 is still δ(n)-steal-resilient encryption, with δ(n) = 1

ρ(τ+1) , where

n = ρζ(1 + τ).

The above Corollary 5 actually separates our notion from secret-sharing
scheme: After the tweak in the above corollary, the resulting scheme is no longer
a secret sharing scheme.

5.2 Combine Steal-Resilient Encryption and Semantic Secure
Encryption

We wish to combine both of the advantage of Steal-Resilient Encryption in
leakage setting, and the advantage of semantic secure encryption in standard
adaptive chosen message/plaintext attack setting (CCA2/CPA2).

Let Φ0 be the steal-resilient encryption scheme defined above. Let Φ1 be a
given semantic-secure encryption scheme (precisely, CTR mode of a semantic
secure block cipher). Eventually, our encryption scheme Φ2 is defined as below

• Φ2.KeyGen(1λ)← (k, k0, k1):
1. Compute key M← Φ0.KeyGen(1λ).
2. Compute key k ← Φ1.KeyGen(1λ).
3. Output (k,M).

• Φ2.Encrypt(k,M; Msg)→ (C0, C1)
1. Encrypt plaintext Msg using semantic secure encryption to obtain cipher-

text Ctx← Φ1.Encrypt(k; Msg).
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2. Split the ciphertext Ctx into two shares using steal-resilient encryption
(C0, C1)← Φ0.Encrypt(M; Ctx).

3. Output (C0, C1).

• Φ2.Dec(k,M;C0, C1)
1. Merge the two shares C0 and C1 as ciphertext Ctx← Φ0.Decrypt(M;C0, C1).
2. Decrypt Ctx as Msg← Φ1.Decrypt(k; Ctx).
3. Output Msg.

We remark that, in our proposed scheme, for large input size, Φ1 can run in
CTR mode and Φ0 can run over every ρζ(1 + τ)-bit segment in ciphertext of Φ1

independently.

Theorem 6 Let Φ2 be the proposed encryption scheme by combining a steal-
resilient encryption Φ0 and a semantic secure encryption Φ1. Then Φ2 is semantic-
secure in standard model, and is δ(n)-steal-resilient encryption with split-factor
τ in our leakage-model, where 1/δ(n) = ρ(τ + 1) + O(1). (Proof is given in our
full version [30]).

6 Conclusion

In this work, we proposed a new and strong leakage setting, a novel notion of
computational entropy, and a construction to achieve higher security against
strong leakage. We separated our new notion from several relevant existing con-
cepts, including Yao-Entropy, Hill-Entropy, All-or-Nothing Transform, Exposure
Resilient Function. Unlike most of previous leakage resilient cryptography works
which focused on defeating side-channel attacks, we opened a new direction to
study how to defend against backdoor (or Trojan horse) and covert channel
attacks.
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