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Abstract. Recent times have witnessed increasing utilization of wide
area measurements to design the transmission line protection schemes
as wide area measurements improve the reliability of protection meth-
ods. Usage of ICT tools for communicating sensor measurement in power
networks demands immunity and resiliency of the associated protection
scheme against false data injection attack (FDIA). Immunity against ma-
licious manipulation of sensor information is attainable by securing the
communication channels connecting the sensors through cryptographic
protocols, and encryption. However, securing all the sensors and commu-
nication channels is economically unviable. A practical solution involves
securing a reduced set of sensors without compromising fault detection
accuracy. With the aim of developing a simple, economically viable and
FDIA resilient scheme under the assumption that the adversary has com-
plete knowledge of the system dynamics, the present work proposes a
logical analysis of data (LAD) based fault detection scheme. The pro-
posed scheme identifies the minimal set of sensors for FDIA resiliency
and detects the state (faulty or healthy) of the power network relying on
the measurements received from the ‘minimal sensor set’ only. Validation
of the proposed protection scheme on IEEE 9-bus system reveals that
in addition to being FDIA resilient, it is reliable and computationally
efficient.

Keywords : Smart Grid, Transmission Line Protection, False Data Injec-
tion Attack (FDIA), Fault Detection, Partially Defined Boolean Function (pdBf),
Logical Analysis of Data.

1 Introduction

The reliable operation of any power system is heavily dependent on the devel-
opment of a suitable protection scheme against line faults and contingencies.



A reliable protection scheme allows for faster fault detection and hence early
restoration of power supply post-fault. In recent times, with the soaring assim-
ilation of the physical power transmission system with the cyber information
and communication tools in smart grids, the possibility of cyber-attacks poses
a serious challenge towards the development and implementation of a reliable
protection mechanism against faults. The protection component plays a signifi-
cant role in the overall operation and control of a power system. The increased
stress on rapid detection of faults and reduction in fault levels is arising because
of the penetration of renewable energy sources has led to a paradigm shift from
classical protection scheme using local measurements to protection scheme rely-
ing on ‘wide area measurements’ [1]. The effective performance of a protection
scheme, which rely on wide area measurements, is highly dependent on the sen-
sor information transmitted to the control centers through the cyber network.
Over-dependence of power systems on the public communication networks for
reliable monitoring and operation, makes it vulnerable to cyber attacks [2].

False data injection attack (FDIA) is considered as the most potent cyber
attack in which the overall power grid can be made to collapse by the hacker
with minimal effort. During FDIA, the attacker corrupts the integrity of a set of
measurements that are used in the protection algorithm by tampering the me-
ter /sensor measurements [3, 4]. The protection algorithms are part of the backup
protection strategy, which is operated from the control center(s). Transmission
of false data to the control center may lead to unnecessary control action that
might result in contingencies or even blackout. Consequently, the present sce-
nario demands a protection scheme that is either immune to data falsification
or/and includes a component for preemptive detection of false data injection.
The state-of-the-art for protection of transmission lines [5-8] has not addressed
the deployment of a security mechanism against vulnerabilities caused by FDIA.

Conventional power networks address the need for system monitoring through
state estimation [9], which is carried out using the power system model, and sen-
sor informatics. Conventional bad data detection methods that are part of state
estimators are supposed to detect any malicious manipulation of sensor informa-
tion. However, Liu et al. [10] have demonstrated that a hacker, having enough
knowledge about the system dynamics, can bypass the bad data detection tech-
niques and inject any arbitrary errors into state variables by suitably injecting
malicious sensor information using FDIA. Thus, the manipulation of sensor in-
formation during an attack can provide a deceptive picture regarding the system
dynamics and operation, leading to either non-operation of the relay during fault
or tripping of the relay followed by isolation during a non-faulty /healthy case.
Inappropriate actions of the protective relays, and a delay in the detection of
such attacks can result in a huge economic loss, asset damage, and collapse of
the related sub-systems and control mechanisms. With the explosive growth in
the use of sensors (CT, PT, PMU) and communication network for continuous
online real-time monitoring using the information of the current and/or volt-
age signals at different buses or locations, the scope of mounting a false data
injection attack has increased significantly in recent times.



Recent works on FDIA in power grid have mainly concentrated on the model-
ing of FDIA, detection of an attack and defensive measures [11-25]. The proba-
ble implications arising out of FDIA on power system have been addressed in [3,
11,12]. The notable schemes reported for FDIA detection in power networks
are based on transmission line susceptance measurements [13], reactance per-
turbation [14], joint-transformation [15], extreme learning machine [16], sparse
optimization [17] and cumulative sum approach [18]. Yang et al. [19] proposed
a countermeasure to FDIA using the premise that the sensors, which measure
injective power flow in the buses and are connected to several other buses require
security. Since inaccessibility of those sensors will make it difficult for an attacker
to mount an FDIA. A defense mechanism to protect a set of state variables has
been proposed in [20, 21].

An adaptive Markov based defense strategy for the protection of smart grid
has been reported in [22]. A two-layer attack-defense mechanism to protect
PMUs against FDIA is presented in [23]. In [24], a greedy search algorithm
is presented to obtain the subset of measurements required to be protected to
defend against FDIA. In [25], a scheme based on bilevel mixed integer lin-
ear programming has been presented to prevent the falsification of load data.
A defensive method against data integrity attacks based on the optimal PMU
placement strategy is proposed in [23]. An algorithm for appropriate placement
of PMU in electric transmission network for reliable state estimation against
FDIA has been presented in [26]. In [27], a generalized scheme for detecting
data integrity attacks in cyber-physical systems based on sensor characteristics
and noise dynamics has been proposed.

Most of the existing works on FDIA mentioned above have only concentrated
on detection of FDIA without analyzing its effect on the operation of the trans-
mission line protection module. To the best of our knowledge, no work has been
reported on analyzing the implications of FDIA on fault detection and develop-
ing an FDIA immune protection scheme. A simple solution to this problem is to
replace the set of all the existing sensors 7 with ‘secure sensors’. Secure sensors
communicate using cryptographic protocols and methods, which prevent any
chances of FDIA unless the keys of cryptographic protocols are compromised.
Moreover, secure sensors are protected from physical tampering using tamper-
resistant hardware. However, the sheer number of installed meters/sensors in
electric grids makes it impractical to replace all the sensors with secured sen-
sors [28]. At best, we can secure a small set of sensors 7y, where 74 C 7.

Moreover, the selection of the reduced sensor set should ensure no degra-
dation in the performance of the protection algorithm, in terms of accurately
detecting various fault scenarios, even in the presence of FDIA. This demands
optimally locating those sensors whose information either do not contribute to
the system monitoring or can be correlated with other sensor information. With
Ts, the protection algorithm is expected to carry out the intended task of detect-
ing the faults by suitable mapping of secured sensor information with the fault
scenarios. Considering a moderate-size network having a few hundred installed



sensors, a brute force search to locate 74 over all possible small-size subsets are
prohibitively costly.

In the present work, the twin problems of identifying 74 and correlating
the protection scheme output ( faulty/healthy ) with the sensor information
are solved using a classifier, which utilizes a partially defined Boolean function
based data analysis technique known as Logical Analysis of Data (LAD) [29-
31]. For a two-class classification problem, LAD aims at optimally generating a
set of rules/patterns, which can collectively classify all the known observations
(power system scenarios). Features/sensor-measurements, which contribute in-
significantly to the classification task, are ignored and further not included in
the rules. In addition of providing immunity against FDIA, a significant contri-
bution of the LAD based protection scheme is the reduction in complexity of the
detection algorithm since the overall sensor information is substantially reduced
without employing any dimension reduction technique.

Popular classifiers, like KNN, ANN, SVM, etc., which are generally preceded
by some feature extraction method, are difficult to implement on the digital re-
lays that work on threshold settings. On the contrary, in the LAD-based scheme,
the raw data (i.e., sensor information) are directly fed into the classifier without
any pre-processing and the classification rules provide a threshold for each input
feature (i.e., sensor information in the present problem). Further, the general-
ization of LAD to datasets of varying dimensions makes the proposed scheme
independent of the power system network topology. It is to be noted that, unlike
the existing works on ‘optimal sensor placement’ [23] based on maintaining ‘sys-
tem state observability’, the present work aims at the identification of optimal
sensor set for imparting immunity to protection scheme against FDIA. Securing
sensors identified using ‘system state observability’ do not guarantee immunity
to power line protection schemes against FDIA.

The effectiveness of the proposed scheme has been evaluated by performing
extensive simulations under normal operation and FDIA for IEEE 9 bus system.
While simulating the false data injection attack, it is assumed that the attacker
has complete knowledge regarding the power system model. For varying scenar-
ios, the proposed scheme is able to correctly detect the state of transmission
line, i.e., faulty or healthy under FDIA of varying degrees with significantly re-
duced execution time (maximum 45 microseconds). The highlights/novelty of
the proposed work can be summarized as:

1. Development of an FDIA immune protection scheme with the assumption
that the attacker has complete knowledge of the power system.

2. Development of a data analysis based approach for identifying the limited
set of sensors that would be secured using tamper-resistant hardware, cryp-
tographic protocol, and encryption.

3. Design of a rule-based fault detection scheme by mapping the secured sensor
information with the state of the power system using LAD-based classifier.

The remainder of the paper is organized as follows. Section 2 discusses the devel-
opment of the proposed LAD based protection scheme. Section 3 demonstrates
the test results on the IEEE 9-bus system to exemplify the proposed scheme.



Finally, Section 4 summarizes the contributions of the paper and provides con-
clusions and future research direction.

2 Design of a LAD based Classifier for Fault Detection

As mentioned earlier, a hacker may try to mislead the control center to take
some unnecessary action by presenting an unrealistic picture of the grid to the
control center using FDIA. For example, consider the attack on a healthy system
by falsification of the current signal carried out by FDIA as depicted in the Fig-
ure 3(a). Any corrective measure based on that falsified information will critically
affect the normal operation of the grid and may lead to power-cut or blackout. A
natural solution to avoid the damage caused by FDIA involves securing all the
sensors of the grid and that will thwart falsification of sensor information. How-
ever, the large number of sensors deployed over wide geographical span makes
the task of providing security to all the individual sensors impractical because
of the related financial implications [28]. A financially viable option is to secure
a small set of the existing sensors. For an n bus system, assuming current and
voltage monitoring at each bus, the overall sensor set 7 is given as

7-:[SII’SV17SIQ7SV2""7517175‘/71] (1)

In the analysis of power system protection schemes, two widely used mea-
sures are referred to as security and dependability. Security refers to the ratio
of the predicted no-fault cases to the actual number of no-fault cases while the
dependability relates to the ratio of the detected fault cases to the actual num-
ber of faults. Now, the goal of identifying the minimal set of sensors 75 involves
finding |75| << |7], such that the security and dependability of the overall power
system protection mechanism are maintained using only the sensors from 7. In
other words, with the information provided by 7, the detection of faults can
be carried out. Also any sensor, which is a member of 74, will be protected
using tamper-resistant hardware, cryptographic protocols, and encryption al-
gorithms. Consequently, falsification of measurements transmitted from those
sensors would be impossible during any FDIA.

It should be noted that the classical dimension reduction technique like PCA,
which aims at reducing redundant information based on the interrelationship
among different attributes is not suitable for identifying 7, since the physical
significance of individual sensor information is not maintained. The dual issues
of optimally reducing the sensor information while preserving the physical sig-
nificance of the data (i.e., bus voltage and current) and classification of network
state (healthy/faulty) have been addressed in the present work by adopting a
logical analysis of data (LAD) based classification scheme [29, 30]. LAD is a data
analysis technique, which uses partially defined Boolean function (pdBf) and its
extensions to find patterns or rules for classification. These patterns (a.k.a. rules)
can be linked to a causal-effect relationship(s) among observations and its class
labels.



For the present work, observations correspond to the sensor information for
a particular fault/scenario, while the class label refers to the occurrence/non-
occurrence of a fault. The patterns (or rules) correlate the magnitude of cur-
rent and voltage at different buses with the fault detector output i.e. 0 or
1 respectively for no fault and fault conditions. The patterns or rules gener-
ated by LAD with 7, can be used to classify future observations, i.e., to pre-
dict the occurrence of a fault. A typical dataset comprising of different ob-
servations (power system scenarios) consists of two sets X+ and X~ respec-
tively comprising of sensor information during fault X+ and no fault X~ cases.
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With Xt NnX~ =0.

The LAD generates positive and negative patterns corresponding to faulty
and healthy scenarios from observations X+ and X ~. The patterns are generated
optimally with minimum sensor information for classifying all the cases. We refer
to subsection 2.3 for the formal definition of a pattern.

Initially, LAD was designed to work with binary data only, in which the set
of binary observations X(= X+ U X ) is expressed as a pdBf p representing a
mapping between X — 6(.){1,0}. The algorithm aims at finding an approximate
extension vy of p, such that « can classify all the unknown observations in the
sample space. In a nutshell, logical analysis of data involves the following five
steps [31].

1. Binarization of Observations: For conversion of non-binary observations to
binary while preserving the inherent characteristics of observations.

Elimination of Redundancy (or Support Sets Generation).
Pattern Generation.
Theory Formation: For Identification of a minimal set of patterns.

GU N

Classifier Design and Validation.

The above steps are dealt with in the subsequent sub-sections.



2.1 Binarization of Observations

For observations represented by numerical data, a threshold (a.k.a. cut-point)
based method is adapted to convert the numerical data to binary. A numerical
attribute [ is represented in binary using two types of Boolean variables, i.e.,
level and interval variables. For a given cut-point ¢, we introduce a level variable
b(B, ¢p) such that

1, if B> cp.

0, otherwise.

b(B, cp) = { (6)
Similarly, interval variables b(f3, ¢;,, ¢}) are created for each pair of cut-points ¢
and c{] and given by

1, ifc;§ﬁ<cg,.
0, otherwise.

5.l = { G
The cut-point computation process is explained using an example dataset pre-
sented in the Table 1. The dataset consists of five observations with three features
A, B, C. Afterward, a class label is attached to each record (Table 2). To convert
the feature A to binary, a dataset is created as in the Table 3. Further, we apply

Attributes | A | B | C A | B|C| Class Labels A| Class Labels A Class Labels A [Class Labels
(Truth Values) (Truth Values) (Truth Values)
X T :positive [3.5[3.8[2.8] [3.5[3.82.8 1 3.5 1 35 1 T 5
examples [2.6]1.6/5.2| [2.6]1.6/5.2 I 26 1 35 0 2‘; .
1.012.1[3.8] [1.0]2.1]3.8 1 1.0 1 2.6 1 53 o
X~ megative[3.5[1.6[3.8] [3.5]1.6]3.8] 0 | [33] 0 | [23 0 0 i
examples [2.3[2.1]1.0] |2.3[2.1[1.0] 0 | [23] 0 | Lo 1 :
Table 1. Table 2. Table 3. Table 4. Table 5.

the following steps to estimate the cut-points.

—

Sort the dataset of Table 3 over A and we obtain the dataset of Table 4.

2. If two or more successive observations have identical attribute value v* but
different class labels, discard all those observations except one. Now, replace
the class label of v’ by a new and unique class label. Refer to Table 5.

3. Repeat the step 2 until only unique values of the attribute are left.

4. Introduce a new cut-point cg, = (’4127'41“)7 if class labels of A%, A*t! are

different.

We found following cut-points using above mentioned steps.
¢y =3.05, ¢2 =245, ¢, =165 .

Consequently, six Boolean variables comprising of three level and three interval
variables are created. After conversion of all the attributes, the binary dataset



obtained is presented in the Table 6. A “categorical" attribute 5 can be converted
into binary by associating each possible value v; of § with a Boolean variable

bWWO{L if B = v, ®)

0, otherwise.

[Yo)
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Table 6. Binary dataset generated from the Table 2 having 15 binary variables from
bl to b15.

2.2 Support set generation

Redundant attributes may be present in the binary dataset generated through
binarization or any other means and removal of redundant attributes is achieved
through the computation of minimal support set. If the projections X]\J}, X, of
the binary attribute set M are such that X;; N X,, = 0, then M is known as
the support set of X. If removal of any constituent of M leads to X;; N X;,; #
(@, then M is known as minimal support set. For finding the minimal support
set, “Mutual-Information-Greedy” algorithm from [32] has been adapted, using
which the following binary features are selected.

M = {by,b15,bs,b1}.

2.3 Modified pattern generation method

In Boolean algebra, a Boolean variable or its negation is known as literals and
conjunction of such literals is known as term. In LAD, if a term only covers some
positive (negative) observations, then it is termed as positive (negative) pattern.



Moreover, if a pattern is minimal, i.e., removal of any literal from the pattern
leads to a pattern, which is covering both positive and negative observations,
then it is called ‘prime pattern’. In this paper, we have used an optimized version
of the prime pattern generation technique as proposed by Boros et al. [30]. The
pattern generation algorithm involves a major modification over the algorithm
proposed in [30]. The modification increases the probability that the coverage
of a point or observation by a single pattern only. Consequently, the ‘theory
formation’ step used to select the most suitable pattern to cover an observation
is no longer required.

After the execution of the algorithm on the projection M = {bs, b5, bs, b1}
of the binary dataset, following positive prime patters are produced:(i) babis,
(ii)b21315. Negative prime patterns generated by following an identical procedure
and the corresponding negative patterns are (i) bobys, (ii)babys. It can be ob-
served, that the binary variables appearing in the generated patterns are not
dependent on the attribute B. Thus, the set of reduced attribute (or the set of
secured sensor in the present problem) 7 is given by 75 = {A, C}.

2.4 Design of Classifier

In this step, generated patterns are transformed into rules. Let us now consider
the first positive pattern bybis. The rule generated using the meaning of bobis
(see Table 6) is =(A > 2.45) A (3.3 < C' < 4.5) = ‘Class label’= 1. One or
more positive rules can be combined into ‘if else-if else’ structure to design a
classifier (fault detector for the present problem). A simple classifier designed
using the positive patterns is presented below.

Simple Classifier.

Input: Observation consisting of attribute A, B, C.
Output: Class label L.

1: if (=(A > 2.45) A (3.3 < C < 4.5)) then

2: Class label £ = 1.

3: else if ((A >2.45) A=(3.3 < C <4.5)) then
4:  Class label £ = 1.

5: else

6:  Class label £ = 0.

7: end if

It can be observed from the ‘Simple Classifier’ also that the feature B of
the original dataset is redundant and omitted by the classifier. Hence, for the
present problem, the reduced sensor 75 is given by 75 = {A, C'}. The removal of
redundant data and reduction in the number of sensors is achieved without any
degradation in the classification accuracy.
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3 Performance Evaluation

In this section, the efficacy of the proposed scheme in terms of optimality of
Ts, appropriateness of rules framed by LAD for fault detection and resilience
against FDIA has been evaluated through comprehensive simulation studies.
In this regard, the performance evaluation has been conducted on IEEE 9-bus
benchmark test power system. The system has been simulated using Simulink
and Simpower system toolboxes of MATLAB and executed on a 64-bit, 4 core
workstation with an Intel Xeon processor and 16 GB RAM. The IEEE 9-bus
system includes 9 buses, 6 lines and 3 loads as shown in Fig 1. In the system,
54 meters (3 for current and 3 for voltage measurement at each bus of the line)
are deployed, which gather information at the corresponding bus.

For generating the training dataset to derive the minimal sensor set 74 and
to frame the classification rules for fault detection based on the information
from 7, only, normal operation without attack by any adversary is considered.
Normal operation incorporates scenarios associated with the healthy operation,
contingencies, and faults in the power network. Observations related to healthy
system state are having a class label 0. On the other hand, observations associ-
ated with a faulty system state are marked by 1 as their class label. Note that,
the observations related to contingencies also have the class label as 1. The de-
tails of power system scenarios considered for training dataset preparation are
presented in the Table 7.

During fault or power system contingencies (load variation and power swing)
the current and voltage magnitude vary widely, and protection mechanisms
present in the control center may require to take corrective measures to re-
store the optimal operating condition of the power system. However, if a healthy
system is subjected to measures related to fault or contingencies, the conse-
quences could be devastating. Any attacker with prior knowledge regarding the
power system operation can manipulate the magnitude of voltage and current
signals in order to mislead the control center to take unnecessary action whose
consequence could be catastrophic.

To analyze the performance of the proposed protection scheme in terms of
robustness against injection of fake data that may cause unintended operation,
test dataset for validation has been generated by simulating several false data
injection attack (FDIA) carried out against unsecured sensors. Two such attacks
are presented in the Figure 2(a) and 3(a). Along with FDIAs, several fault and
no-fault cases have also been simulating under varying fault parameters (fault
location, fault inception angle and fault resistance). Some no-fault cases involv-
ing system frequency and voltage variation, switching of transmission line and
sudden load encroachments have also been considered in the testing data for
security analysis during healthy condition. The inclusion of FDIA, fault and no-
fault cases in the test dataset allows validating the immunity of the proposed
scheme against FDIA.

With the generated training dataset consisting of normal operation only, the
LAD based approach discussed in section 2 is employed for the design of a clas-
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T Fault Type LG, 2LG, 3LG, 2L and 3L
. g Fault Location  [1% to 100% of the line length
E E at an interval of 5 km
£[Fault inception angle 0° to 90°
Fault resistance 042, 5042 and 100£2
g ¢| Load variation +20%,+40%
“ & Frequency variation +2%,+5%
% g Voltage variation +5%,+10%
&0
No Fault

Table 7. Power Syst. Scenarios Considered.

R 7 3 9 ;
2 — N ’
6&_\» = FDIA — m
\ . \
Gen2 Load 3 + Gen3
® *la
s o] aelr 6 g
L3
AV,
Load 1 Load 2 +Vg
| aVe
A B . 4
* 1
Gen 1

Fig. 1. IEEE 9-bus system with 13 protected sensors on different buses.

sifier to differentiate the healthy system state from the faulty state. The training
dataset consists of 4648 observations. Among those, 4500 observations are from
different faulty scenarios and rest are observations from healthy scenarios. Let us
now summarize the results related to individual steps of LAD over the training
set.

1. Binarization of Observations: In this step, 12048 binary feature variables are
created from 54 current and voltage information collected from 9 different
buses following the steps described in subsection 2.1.

2. Support Set Generation: Here 21 binary variables are selected from 12048
available binary variables using the method described in the subsection 2.2.

3. Pattern Generation: In this step, 28 rules are generated. The secure sensor set
Ts is also generated at this point. The details of secure sensors are available in
the Figure 1. Form the possible 54 sensors, by using only 13 secured sensors
(7 currents and 6 voltages), it is possible to detect the faults. Note that, it is
clear from Figure 1 that two buses, i.e., bus-8 and bus-9 (marked by arrow)
do not have any secure sensor.
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4. Classifier Design and Validation: A classifier is built using the rules generated
in the last step. The details of which are available in the Alogorithm 3.

— Fault

Phase A current (p.u.)

0 0.05 0.1 0.15 0.2 0.25 0.3
(a)
w© 1r
<
=
@
20 5
=
0 . L . . .
0 0.05 0.1 0.15 0.2 0.25 0.3
(b)
Time in sec.

Fig. 2. (a) Suppression of current waveform of Phase “A” by FDIA during actual fault
at bus-9 (b) Corresponding Trip signal by resilient protection scheme.

Let us now illustrate the results using an example. A single line to ground
fault at 50 km from the bus-7 in the line between bus-7 and bus-8 has been
simulated and the corresponding voltage and current waveform acquired by the
unsecured sensors at bus-9 during the fault in the absence and presence of FDIA
has been illustrated in Fig. 2(a). It can be observed that the current waveform
in phase “A” during “AG” fault is manipulated at bus-9 by the attacker. Thus,
replicating the healthy scenario post-fault, and in an attempt to mislead any fault
detection process, the control center is presented with the falsified information
only. The corresponding test result of the proposed FDI resilience protection
scheme is shown in Fig. 2(b). It can be observed that the proposed scheme is
able to detect the fault correctly even in the presence of FDIA and issued the
‘Trip signal’ for proper operation of the relay at the appropriate time. Further,
a healthy (no fault) case has also been analyzed in which the attacker launches
an FDIA at bus-8 by replicating a single line to ground fault. The corresponding
test results depicted in Fig.3(a, b) confirm the immunity of the proposed scheme
against FDIA.

Further, the performance assessment of the proposed scheme has been car-
ried out using two statistical indices commonly used in the performance analysis
of transmission line protection schemes, i.e., dependability and security. Depend-
ability relates to the ratio of the detected fault cases to the actual number of
faults while security refers to the ratio of the predicted no-fault cases to the ac-
tual number of no-fault cases. We could achieve 100% dependability and security
in all the scenarios. Furthermore, the detection of fault is achieved in less than
45 microseconds. We have also carried out similar exercise using IEEE 39-bus



Algorithm 2 Resilient Protection Scheme for IEEE 9-bus system.

1: if —(I3 g > 1.105100) A ~(Vy 4 > 0.795880) then

2 Fault.

3: else if —(I3 g > 1.105100) A =(V3 ¢ > 0.722580) then
4: Fault.

5: else if (V4 4 > 0.795880) A =(V3 ¢ > 0.722580) then
6

7

8

9

Fault.
else if (V4 4 > 0.795880) A =(V3 g > 0.744375) then
Fault.

else if (V4 4 > 0.795880) A =(Vy ¢ > 0.721830) then
10: Fault.
11: else if (V4 4 > 0.795880) A (I7 4 = 2.697800) then
12: Fault.
13: else if ~(I5 ¢ > 0.949195) A (I7 4 > 2.697800) then
14: Fault.
15: else if —(V3 o > 0.722580) A (V3 g > 0.744375) then
16: Fault.
17: else if (V3 o > 0.722580) A ~(Vg, g > 0.553810) then
18: Fault.
19: else if (V3 ¢ > 0.722580) A (I7, 4 > 2.697800) then
20: Fault.
21: else if (V3 ¢ > 0.722580) A =(Vg 4 > 0.567410) then
22: Fault.
23: else if (V3 g > 0.744375) A ~(Vy ¢ > 0.721830) then
24: Fault.
25: else if =(Ig 4 > 1.196150) A =(Vg 4 > 0.567410) then
26: Fault.
27: else if =(Vy ¢ > 0.721830 A =(Vg 4 > 0.567410) then
28: Fault.
29: else if —(Iy 4 > 2.528100) A (Vg g > 0.553810) then
30: Fault.
31: else if (Vg g > 0.553810) A (I7 4 > 2.697800) then
32: Fault.
33: else if (I3 g > 1.105100) A (V4 4 > 0.795880) A (I3 4 > 2.528100) then
34: Fault.

35: else if (I3, g > 1.105100) A (V4 4 > 0.795880) A =(Vg 4 > 0.858385) then
36: Fault.

37: else if (I3 g > 1.105100) A (Ig, 4 > 0.594455) A —(Ig 4 > 0.776730) then
38: Fault. '

39: else if ~(Vy 4 > 0.795880) A —(I5 ¢ > 0.949195) A (V3 ¢ > 0.722580) then
40: Fault.

41: else if ~(Vy 4 > 0.795880) A —(I5 ¢ > 0.949195) A ~(I3 4 > 2.528100) then
42: Fault. '

43: else if —(Vy 4 > 0.795880) A (V3 o > 0.722580) A —~(I4, 4 > 0.843595) then
44: Fault. '

45: else if —(Vy 4 > 0.795880) A (V3 g > 0.744375 A —(I7 4 > 0.780975) then
46:  Fault. '

47: else if ~(Vy 4 > 0.795880) A (V3 g > 0.744375) A —(Ig, 4 > 1.196150) then
48: Fault.

49: else if (I5 ¢ > 0.949195) A —~(I7, A > 0.780975) A —(I4 4 > 0.843595) then
50: Fault.

51: else if —(V3,C > 0.722580) A =(V4,C > 0.721830) A (V6, B > 0.553810) then
52: Fault.

53: else if (V3 o > 0.722580) A (I7 4 > 0.780975) A =(V4 ¢ > 0.721830) then
54: Fault.

55: else if ~(Vy 4 > 0.795880) A —~(I5,C > 0.949195) A (V4 o > 0.721830) A —(I3, 4 > 2.874700) then
56: Fault.

57: else

58: No Fault.

59: end if
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Fig. 3. (a) Suppression of current waveform of Phase “A” by FDIA during healthy
operation at bus-9 (b) Corresponding Trip signal by resilient protection scheme.

bench-marked system having 234 installed voltage and current sensors, and we
have achieve 100% security and dependability in this case also.

4 Conclusion

Dependence of protection algorithms on the information from the sensors spread-
ing across wide geographical locations has increased the risk of FDIAs in power
networks. In this paper, an FDIA resilient protection scheme has been proposed,
in which immunity against FDIA has been achieved by securing a minimal set
of sensors. The identification of sensor set contributing maximum to the sys-
tem monitoring while avoiding redundancy has been carried out by employing
a Boolean function based approach known as LAD. In addition of locating the
strategic sensors, and thus, reducing the dimension of measured data, the LAD
based approach provides a rule-based mapping between the secured sensor in-
formation, and the state (i.e., healthy or faulty) of the power system both under
normal condition and FDIA. This avoids providing security to all the sensors,
thereby reducing the financial cost for necessary immunity against FDIA. The
proposed computationally efficient protection scheme has been well validated
for different types of faults under varying fault and power system operating
parameters for IEEE three machine 9-bus system. The validation confirms the
robustness of the proposed scheme against FDIA, by performing the intended re-
laying action. Future work in this direction is planned on extending the proposed
protection scheme for fault classification, section identification, and location es-
timation during FDIA.
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