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Abstract. To protect distributed network resources and assets, collab-
orative intrusion detection systems / networks (CIDSs / CIDNs) have
been widely deployed in various organizations with the purpose of detect-
ing any potential threats. While such systems and networks are usually
vulnerable to insider attacks, so that some kinds of trust mechanisms
should be integrated in a real-world application. Challenge-based trust
mechanisms are one promising solution, which can measure the trust-
worthiness of a node based by sending challenges to other nodes. In
the literature, challenge-based CIDNs have proven to be robust against
common insider attacks, but it may still be susceptible to advanced in-
sider attacks. How to further improve the robustness of challenge-based
CIDNs remains an issue. Motivated by the recently rapid development
of blockchains, in this work, we aim to combine these two and provide
a blockchained challenge-based CIDN framework. Our evaluation shows
that blockchain technology has the potential to enhance the robustness of
challenge-based CIDNs in the aspects of trust management (i.e., enhanc-
ing the detection of insider nodes) and alarm aggregation (i.e., identifying
untruthful inputs).

Keywords: Intrusion Detection, Collaborative Network, Insider Attack,
Blockchain Technology, Challenge-based Trust Mechanism.

1 Introduction

Due to the connectivity and sensing features, Internet-of-Things (IoT) has been
gradually adopted by many organizations. The Gartner manager predicted that
the IoT would keep delivering new opportunities for digital business innovation
over the next decade, many of which can be further boosted by newly developed
technologies like artificial intelligence [12]. Their report forecasts that up to 14.2
billion things will be connected by the end of 2019, and will finally reach a total
of 25 billion devices by the end of 2021 [11].

The rapid growth of IoT devices bring many benefits, i.e., facilitating our dai-
ly lives, but it also becomes a major target by cyber criminals. The Symantec
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security report indicated that the overall volume of IoT attacks remained con-
sistent and high in 2018 [51]. In particular, connected cameras and routers were
the most infected devices - there is an increase on the infection vector. While
worms and bots are still the most commonly detected IoT attacks. For example,
the Mirai distributed denial of service (DDoS) worm remained an active threat
and, account for a 16 percent of the detected attacks, which was the third most
common IoT threat in 2018.

To help protect the security of IoT, intrusion detection systems (IDSs) are a
basic and essential security mechanism. To fit the distributed nature, collabora-
tive intrusion detection systems / network (CIDSs / CIDNs) are often deployed
in a distributed environment, which allow a set of IDS nodes to exchange required
messages and understand the protected environment [54, 59]. A detector could
be either rule-based (signature-based) or anomaly-based. The former has to com-
pare its stored rules with incoming events, in order to identify an attack [44, 55].
The latter discovers a potential threat through identifying an anomaly between
its pre-built benign profile and the current profile [45].

Insider attacks are one major threat to distributed networks and environ-
ments, some trust mechanisms are often implemented to protect CIDSs / CIDNs.
In the literature, challenge-based trust mechanism is one promising solution,
which evaluates a node’s reputation by sending challenges and receiving the
corresponding feedback [8]. A series of research like [8, 9] has proven its effec-
tiveness against common insider attacks; however, some studies demonstrated
that such challenge-based CIDNs may still be susceptible to advanced attack-
s [23–25, 27]. For instance, the Passive Message Fingerprint Attacks (PMFA) [23]
enables suspicious nodes to cooperate in identifying normal messages and remain
their reputation without being detected. Thus, there is a great need to design a
more robust challenge-based CIDNs to ensure its detection effectiveness. Below
are two desirable attributes for a new CIDN framework.

– To avoid the issue of a single point of failure (SPOF), the CIDN framework
should not rely mainly on a centralized server.

– The CIDN framework should provide a robust trust management process,
which can evaluate the trustworthiness of nodes in an accurate way.

– The CIDN framework should be able to identify malicious inputs, which are
even from some trusted nodes.

Recently, blockchain technology has become quite popular encouraged by the
success of cryptocurrency Bitcoin. The Gemalto report [10] indicates that the
adoption of blockchains has doubled from 9% to 19% in the early 2019, and this
trend is likely to continue in the next year and beyond. They also described a
survey that up to 23% of respondents believed that blockchain technology would
be an ideal solution to use for securing IoT devices, and 91% of organisations
are likely to consider it in the future. For instance, Amazon announced its new
managed service, Amazon Managed Blockchain, which allows users to set up and
configure a scalable blockchain network with just a few clicks [2]. With a huge
number of devices, blockchains can increasingly be used to monitor and record
those communications and transactions in an IoT environment [29].
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Currently, blockchains have been applied into many domains like IoT [28,
48], transportation [17, 22], energy [47]. The strong encryption used to secure
blockchains can greatly increase the difficulty for cyber criminals to brute-force
their way into private and sensitive environments. Due to these merits, some
research has started trying to combine blockchains with CIDSs / CIDNs. An
initial blockchain-based framework was proposed by Alexopoulos et al. [1], aim-
ing to protect the alarm exchange among the collaborating nodes. They regarded
raw alarms generated by the monitors are stored as transactions in a blockchain,
replicated among the participating nodes of peer-to-peer network. While they did
not show any experimental implementation or results. Tug et al. [52] introduced
CBSigIDS, a framework of collaborative blockchained signature-based IDSs, by
incrementally sharing and building a trusted signature database via blockchains
in a CIDN network. They mainly targeted the combination of blockchains with
signature-based IDSs, but remained anomaly-based detection as future work. On
the other hand, a blockchain-based framework called CIoTA was proposed by
Golomb et al. [13], which focused solely on anomaly detection via updating a
trusted detection model.

Contributions. Though some studies have discussed the intersection between
CIDSs and blockchains, to the best of our knowledge, most existing work was
initialized at the high level, without specifying a concrete CIDS / CIDN. In
addition, there is no work focusing on a specific trust-based detection system. To
make up this gap, in this work, we focus on the challenge-based trust mechanism,
and develop a blockchained challenge-based CIDN framework. Our contributions
can be summarized as below.

– To combine the blockchain technology with a concrete type of trust-based
CIDN, we propose a blockchained challenge-based CIDN framework, which
can be workable under both signature-based and anomaly-based detection.
In particular, blockchains can be served as an additional layer to provide the
flexibility in practical deployment.

– Under our framework, we show how to use blockchains to enhance the ro-
bustness of trust management against attacks, as well as protect the alarm
aggregation process from malicious inputs. The enhancement is valid for
both signature-based and anomaly-based detection.

– In the evaluation, we exploit the performance of our framework in the as-
pects of trust computation and alarm aggregation. Our results demonstrate
that our framework can become more robust via the implementation of
blockchains, i.e., identifying malicious nodes and untruthful inputs.

Paper organization. Section 2 introduces research studies on collaborative
intrusion detection and the background of blockchains. Section 3 describes our
framework of blockchained challenge-based CIDNs that can be suitable for both
signature-based and anomaly-based detection. We show how to use blockchains
to enhance the trust management and alarm aggregation. Section 4 shows our
experimental settings and analyzes the collected results. We discuss some chal-
lenges in Section 5 and conclude the work in Section 6.
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Blockchain – A High-level View
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Fig. 1. The high-level review of blockchains.

2 Background and Related Work

In this section, we introduce the background of blockchain technology and re-
view research studies on distributed detection systems, collaborative intrusion
detection and blockchain-based detection.

2.1 Background of Blockchains

The original purpose of blockchains is to make payments between entities with-
out a trust relationship and build a temper-resistant blockchain. Cryptocur-
rencies like Bitcoin have proven to be a phenomenal success. The underlying
blockchain technique, which is an ingenious combination of multiple technolo-
gies such as peer-to-peer network, consensus protocol over a distributed network,
cryptographic schemes, distributed database, smart contract and game theory,
provides a decentralized way to build trust in our social and economic activities,
and thus holds a huge promise to change the future of financial transactions, and
even our way of computation and collaboration. As one of hottest topics in the
fields of IT and Fintech, blockchain has drawn much attention from researchers,
as well as IT and fintech industry. So far, both research community and indus-
try community have made significant progresses in blockchain technologies and
applications.

A blockchain node often maintains a list of records (known as blocks), which
are organized in a chronological order based on discrete time stamps [60]. A
block is typically comprised of a payload, a timestamp and a cryptographic hash
value. The first block is called genesis block, and the node behind can connect to
the previous one via a hash value. New blocks are added in a sequential manner
with the next block containing a hash of the previous block. A new block can
be generated once the previous block enters in the blockchain. The big feature
of a block is that the recorded data in any block could not be modified without
the alteration of all subsequent blocks [38]. The high-level review of blockchains
is depicted in Fig. 1.

A blockchain can be generally classified into two categories: public blockchain
and permissioned blockchains [60]. The former enables anyone to join and con-
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tribute to the network like Bitcoin [39] and Ethereum [58]. A public blockchain
is completely open and anyone is free to join & leave. Everyone can participate
in the major activities of the blockchain network including reading, writing and
auditing the ongoing activities on the public blockchain network. The latter al-
lows only verified entities to join the network, and perform only certain activities
on the network like Hyperledger [15]. For example, Such blockchains would grant
special permissions to each participant to have permissions to read, access and
write pre-defined information on the blockchains. Blockchain nodes can make a
decision-making process via consensus algorithms. There are some requirements
for consensus algorithms in blockchains. For instance, the algorithm should col-
lect all the agreements from chain nodes. Each node should aim at a better
agreement to fit a whole interest.

There are may related studies focused on consensus mechanism. Badertscher
et al. [3] put forth the first global universally composable (GUC) treatment of
PoS-based blockchains in a setting that captures arbitrary numbers of parties
that may not be fully operational (i.e., dynamic availability, which naturally cap-
tures decentralized environments within which real-world deployed blockchain
protocols are assumed to operate). They proposed a new PoS-based protocol
called “Ouroboros Genesis” which enables new or offline parties to safely (re-
)join and bootstrap their blockchain from the genesis block without any trusted
advice (such as checkpoints) or assumptions regarding past availability. With
the model allowing adversarial scheduling of messages in a network with delays
and captures the dynamic availability of participants in the worst case, the au-
thors proved the GUC security of Ouroboros Genesis against a fully adaptive
adversary controlling less than half of the total stake. Kiffer et al. [16] develope-
d a simple Markov-chain based method for analyzing consistency properties of
blockchain protocols. This method could be used to address a number of basic
questions about consistency of blockchains such as providing a tighter guaran-
tee on the consistency property of Nakamoto’s protocol, analyzing a family of
delaying attacks and extending them to other protocols, giving the first rigorous
consistency analysis of GHOST, and so on. Wan et al. [56] presented a novel
hybrid consensus protocol named Goshawk, in which a two-layer chain structure
with two-level PoW mining strategy and a ticket-voting mechanism are elab-
orately combined. They showed that Goshawk is the first blockchain protocol
with three key properties such as high efficiency, strong robustness against 51

Pass et al. [42] proposed a new paradigm called Thunderella for achieving
state machine replication by combining a fast, asynchronous path with a (s-
low) synchronous “fall-back” path. With this paradigm, they provided a new
resilient blockchain protocol (for the permissionless setting) assuming only that
a majority of the computing power is controlled by honest players, and opti-
mistically, transactions could be confirmed as fast as the actual message delay
in the network if 3/4 of the computing power is controlled by honest players,
and a special player called the accelerator is honest. Daian et al. [4] presented a
provably secure proof-of-stake protocol called Snow White. As a matter of fac-
t, Snow White was publicly released in 2016. It provides a formal, end-to-end
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proof of a proof-of-stake system in a truly decentralized, open-participation net-
work. The authors identified a core “permissioned” consensus protocol suitable
for proof-of-stake, and proposed a robust committee re-election mechanism such
that as stake switches hands, the consensus committee can evolve in a timely
manner and always reflect the most recent stake distribution. They also intro-
duced a formal treatment of costless simulation issue and gave both upper- and
lower-bounds that characterize exactly what setup assumptions are needed to
resist costless simulation attacks.

2.2 Related Work

In real-world applications, a separate IDS often has no information about its
deployed and protected environment, opening a chance for attackers and cyber-
criminals. Due to the lack of contextual information, it becomes very hard for
an IDS to figure out complicated attacks. Focus on this issue, there is a great
need for building a distributed system or collaborative network to enhance the
detection performance [59].

Distributed systems. Distributed systems have been widely used in vari-
ous domains over many years. For example, Prras et al. [43] introduced EMER-
ALD (Event Monitoring Enabling Responses to Anomalous Live Disturbances)
in 1997, which aimed to monitor malicious behaviors across different layers in a
large network. It can model distributed high-volume events and correlate them
using traditional IDS techniques. Snapp et al. [46] presented a distributed In-
trusion Detection System (DIDS), which could improve the monitoring process
with data reduction method and centralized data analysis. Then, COSSACK
system [41] was developed to reduce the impact of DDoS attack, which could
work without the support and inputs from humans, i.e., it could generate rules
and signatures in an automatic way. Then, DOMINO (Distributed Overlay for
Monitoring InterNet Outbreaks) [61] was proposed, aiming to enhance the col-
laboration process among different nodes. They particularly used an overlay
design to achieve a heterogeneous, scalable, and robust mechanism. PIER [14]
was an Internet-scale query engine and a kind of querying-based system. It could
help distribute dataflows and queries in a better way.

Collaborative intrusion detection. A collaborative system encourages an
IDS node to collect and exchange information with other nodes. Li et al. [18]
found that most distributed intrusion detection architectures could not be s-
calable under different communication mechanisms. Thus, they proposed a dis-
tributed detection system by means of a decentralized routing infrastructure.
However, one big limitation is that all nodes in their approach should be in-
tra trusted. This may lead to insider attacks, which are one common threat for
various distributed systems and collaborative networks.

To protect distributed / collaborative systems against insider attacks, it is
very important to design suitable trust mechanisms to measure the reputation in
such systems and networks. As an example, a overlay IDS was proposed by Duma
et al. [5], which could identify insider attacks. It consists of a trust-aware engine
for correlating alarms and an adaptive trust mechanism for handling trust. Then
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Tuan [53] applied game theory to help enhance the detection performance in a
P2P network. They found that if a trust system was not incentive compatible,
the more numbers of nodes in the system, the less likely that a malicious node
would be identified.

Fung et al. [8] proposed a kind of challenge-based CIDNs, which could e-
valuate the trustworthiness of an IDS node based on the received answers to
the challenges. They first proposed a collaboration framework for host-based
IDSs with a forgetting factor, which can emphasize on the recent behavior of
a node. To enhance such challenge mechanisms, Li et al. [19] claimed that IDS
nodes may have different sensitivity levels in identifying particular intrusions.
Then they proposed a concept of intrusion sensitivity (IS) that measures the
detection sensitivity of an IDS for a particular intrusion. They also designed an
intrusion sensitivity-based trust management model [20] that could automatically
allocate the values by using machine learning classifiers like KNN classifier [34].
They also performed a study to investigated the effect of intrusion sensitivity on
detecting pollution attacks, where a set of malicious nodes collaborate to affect
alert rankings by offering untruthful information [21]. They indicated that IS
can help decrease the reputation of malicious nodes quickly. Other related work
regarding how to improve the performance of intrusion detection can refer to [6,
7, 30–33, 36, 37, 57].

Blockchain-based intrusion detection. The application of blockchains
in the field of intrusion detection has been studied, but it is still an emerging
topic. Alexopoulos et al. [1] described a framework to show how to combine a
blockchain with a CIDS. They considered a set of raw alarms produced by each
IDS as transactions in a blockchain. Then, all collaborating nodes could use a
consensus protocol to ensure the transaction validity before delivering them in
a block. This can make sure that the stored alarms are tamper resistant in the
blockchain. The major limitation is that they did not provide any results or
implementation detail.

Then Meng et al. [38] provided the first review regarding the intersection
of blockchains and intrusion detection, and introduce the potential application
of such combination. They indicated that blockchains can help enhance an ID-
S in the aspects of data sharing, trust computation and alarm exchange. For
anomaly detection, Golomb et al. [13] described a framework called CIoTA,
which could apply blockchains to perform anomaly detection in a distributed
manner for IoT devices. by contrast, Li et al. [26] demonstrated how to use
blockchains to enhance the performance of collaborative signature-based IDSs
via building a verifiable rule database. On the other hand, some studies investi-
gated how an IDS can help protect blockchain applications. Steichen et al. [50]
introduced an OpenFlow-based firewall named ChainGuard, which could help
protect blockchain-based SDN and identify malicious traffic and behavior in the
network.
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Fig. 2. Blockchained challenge-based CIDN framework: a high-level review.

3 Our Proposed Framework

As discussed above, there are already some studies investigating the intersec-
tion of collaborative intrusion detection and blockchains. While most of them
(e.g., [1]) focused on a generic CIDS without considering a particular trust mech-
anism. In practice, the implementation of blockchains may depend on the specific
types of trust mechanisms. In this section, we propose a blockchain-based frame-
work for challenge-based CIDNs particularly.

3.1 Framework Design

Fig. 2 shows the high-level framework of blockchained challenge-based CIDNs.
Under a CIDN, an IDS module is a basic component. There are some more
major components: collaboration component, trust management component, P2P
communication, and chain component.

– Collaboration component is mainly responsible for assisting a node in com-
puting the trust values of another node by sending out normal requests or
challenges, and receiving the relevant feedback. This component can help a
tested node deliver its feedback when receiving a request or challenge. For
instance, Fig. 1 shows that when node A sends a request or challenge to
node B, it can receive relevant feedback.
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– Trust management component is responsible for evaluating the reputation of
other nodes via a specific trust approach. Challenge-based mechanism is a
kind of trust approach that computes the trust values through comparing the
received feedback with the expected answers. Each node can send out either
normal requests or challenges for alert ranking (consultation). To further
protect challenges, the original work [8] assumed that challenges should be
sent out in a random manner and in a way that makes them difficult to be
distinguished from a normal alarm ranking request.

– P2P communication. This component is responsible for connecting with oth-
er IDS nodes and providing network organization, management and commu-
nication among IDS nodes.

– Chain component. This component aims to connect the node with the blockchain,
i.e., uploading information, voting and receiving decisions.

Blockchain layer. This layer makes the framework different from traditional
CIDN frameworks, by allowing to establish a consortium blockchain. A sepa-
rate layer can facilitate the migration from the traditional framework to our
blockchain-based framework, without the need of changing the infrastructure
much. This framework is also workable under both signature-based and anomaly-
based detection. That is, this layer provides an interface for both detection ap-
proaches to connect with blockchains. Taking malicious feedback as an example,
each chain node can check and share the suspicious feedback to the chain, and
other chain nodes can help verify the feedback. This can help either build a
trusted rule database [26] or enhanced profile [13].

In such network, every IDS node can select its own partners according to
defined policies, and maintain a list called partner list. When a node wants to
join the CIDN, it first has to apply and get a unique proof of identity (e.g.,
a public and a private key pair) via a trusted certificate authority (CA). As
depicted in Fig. 1, if node B asks for joining the network, it has to send a
request to a CIDN node, say node A. Then, node A makes a decision and sends
back an initial partner list, if node C is accepted. A CIDN node can typically
send two types of messages: challenge and normal request.

– A challenge mainly contains a set of IDS alarms, where a testing node can
send these alarms to the tested nodes for labeling alarm severity. Because
the testing node knows the severity of these alarms in advance, it can judge
and compute the satisfaction level for the tested node, based on the received
feedback.

– A normal request is sent by a node for alarm aggregation, which is an im-
portant feature of collaborative networks in improving the detection perfor-
mance of a single detector. The aggregation process usually only considers
the feedback from highly trusted nodes. As a response, an IDS node should
send back alarm ranking information as their feedback.
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3.2 Trust Management

Node expertise. In this work, we consider three expertise levels for an IDS
node as low (0.1), medium (0.5) and high (0.95). The expertise of an IDS can
be using a beta function described as below:

f(p′|α, β) =
1

B(α, β)
p′α−1(1− p′)β−1

B(α, β) =

∫ 1

0

tα−1(1− t)β−1dt
(1)

where p′(∈ [0, 1]) is the probability of intrusion examined by the IDS. f(p′|α, β)
means the probability that a node with expertise level l responses with a value
of p′ to an intrusion examination of difficulty level d(∈ [0, 1]). A higher value of
l means a higher probability of correctly identifying an intrusion while a higher
value of d means that an intrusion is more difficult to detect. In particular, α
and β can be defined as [9]:

α = 1 +
l(1− d)

d(1− l)
r

β = 1 +
l(1− d)

d(1− l)
(1− r)

(2)

where r ∈ {0, 1} is the expected result of detection. For a fixed difficulty
level, the node with higher level of expertise can achieve higher probability of
correctly detecting an intrusion. For example, a node with expertise level of 1
can accurately identify an intrusion with guarantee if the difficulty level is 0.

Node Trust Evaluation. To measure the reputation of a target node, a
testing node can deliver challenges via a random generation process. Then the
testing node can calculate a score to indicate the satisfaction. According to [8],
we can evaluate the reputation of a node i according to node j as follows:

T ji = (ws

∑n
k=0 F

j,i
k λtk∑n

k=0 λ
tk
− Ts)(1− x)d + Ts (3)

where F j,ik ∈ [0, 1] is the score of the received feedback k and n is the total
number of feedback. λ is a forgetting factor that assigns less weight to older
feedback response. ws is a significant weight depending on the total number of
received feedback, if there is only a few feedback under a certain minimum m,

then ws =
∑n

k=0 λ
tk

m , otherwise ws = 1. x is the percentage of “don’t know”
answers during a period (e.g., from t0 to tn). d is a positive incentive parameter
to control the severity of punishment to “don’t know” replies. More details about
equation derivation can be referred to [8].

Satisfaction Evaluation. Intuitively, satisfaction can be measured between
an expected feedback (e ∈ [0, 1]) and an actual received feedback (r ∈ [0, 1]). In
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addition, we can construct a function F (∈ [0, 1]) to derive the satisfaction score
as follows [8, 9]:

F = 1− (
e− r

max(c1e, 1− e)
)c2 e > r (4)

F = 1− (
c1(r − e)

max(c1e, 1− e)
)c2 e ≤ r (5)

where c1 controls the degree of penalty for wrong estimates and c2 controls
satisfaction sensitivity. A large c2 means more sensitive. In this work, we set
c1 = 1.5 and c2 = 1 based on the simulation in [9].

In combination with blockchains. The blockchained challenge-based CID-
N can be treated as a consortium blockchain, as each node should be verified
by a CA and get their key pair. It is a key to enhance the robustness of trust
computation by measuring the received feedback. In this case, we can submit
the received feedback to the chain for verification. If it is not passed, then the
feedback can be considered as a suspicious one.

3.3 Alarm Aggregation

Alarm aggregation is a critical process, which can help a CIDS / CIDN make
a decision. Intuitively, a node performing the process can request the alarm
rankings from other trusted nodes in its partner list. For instance, node j can
aggregate the feedback Rj(a) from others, and make a decision, e.g., the aggre-
gated ranking of alert a, by using a weighted majority method as below.

Rj(a) =

∑
T≥r T

j
i D

j
iRi(a)∑

T≥r T
j
i D

j
i

(6)

where Ri(a)(∈ [0, 1]) indicates the aggregated ranking of alert a by node i, r
means a trust threshold that node j only accepts the alarm ranking from those
nodes whose reputation is higher than this threshold. T ji (∈ [0, 1]) indicates the

reputation of node i according to node j. Dj
i (∈ [0, 1]) describes how many hops

between these two nodes.
In combination with blockchains. The alarm aggregation is a critical

process in CIDNs, in which an IDS node decides whether there is an intrusion or
not. In real-world applications, some malicious nodes may have high reputation
at first (e.g., betrayal nodes) and can send untruthful alarm feedback. To avoid
the negative impact, the blockchained challenge-based CIDN can submit the
received alarm ranking to the chain for validation. If any suspicious clues are
found, then the received alarm feedback can be discarded.

4 Evaluation: A Case Study

In this section, as a first study, our purpose is to evaluate the initial performance
of our framework in a simulated environment, where malicious nodes could per-
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form an advanced collusion attack, called random poisoning attack [35]. It en-
ables malicious nodes making untruthful feedback in a possibility. In practice,
the possibility can be tuned according to the requirements from different envi-
ronments and networks. The simulated environment contains 50 nodes that are
randomly distributed in a 12×12 grid region. We deployed an IDS, e.g., Snort [49]
and Zeek [62] in each node, and all IDS nodes can find their own partners after
communicating with others within a time period. The consortium blockchain
was deployed in a mid-end computer with Intel(R) Core (TM)i6, CPU 2.5GHz
with 100 GB storage.

To evaluate the trustworthiness of partner nodes, each node can send out
challenges randomly to its partners with an average rate of ε. There are two
levels of request frequency: εl and εh. For the nodes that have a unclear trust
value around the threshold, the frequency should be set as high εh. The detailed
parameters are shown in Table 1. All the settings are maintained similar to
relevant work [8, 20, 24].

Table 1. Parameter settings in the experiment.

Parameters Value Description

λ 0.9 Forgetting factor

m 10 Lower limit of received feedback

d 0.3 Severity of punishment

εl 10/day Low request frequency

εh 20/day High request frequency

r 0.8 Trust threshold

Ts 0.5 Trust value for newcomers

Trust evaluation under attack. We randomly selected three expert nodes to
perform the random poisoning attack. A malicious node under random poisoning
attack enjoys a possibility of 1/2 in sending out malicious feedback. Fig. 3 depicts
the reputation of malicious nodes under both traditional framework and our
blockchain-based framework.

– It is observed that the trustworthiness of malicious nodes could be reduced
faster under our framework than that under the traditional framework. This
is because traditional framework cannot identify all malicious feedback nodes
as the malicious nodes only behave untruthfully with a possibility.

– By contrast, our framework leverages the application of blockchains and each
feedback could be verified by all chain nodes. This can greatly increase the
successful rate of detecting malicious feedback. Thus, our framework can
decrease the reputation of malicious nodes in a fast manner.

Alarm aggregation under attack. Similarly, we also selected three expert
nodes randomly to deliver false alarm rankings to a node that performs alarm
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aggregation. We mainly consider a false negative (FN) rate and a false positive
(FP) rate. Fig. 4 shows the errors of alarm aggregation under both traditional
framework and our framework.

– It is found that the errors under the traditional framework are generally
high with FN=33.3% and FP=34.8%. This is because as the traditional
framework cannot identify malicious nodes efficiently, e.g., under the random
poisoning attack, so that these malicious nodes could still make a negative
impact on the alarm aggregation.

– In the comparison, our framework could reduce the error rates significantly,
i.e., with FN=10.8% and FP=11.9%. There are two major reasons. One
is that our framework can help identify malicious nodes in a quick manner,
e.g., under the random poisoning attack. Also, in our framework, the received
alarm rankings can be submitted to the chain for verification, and it is easier
to detect untruthful inputs, even from trusted nodes, i.e., betrayal nodes.

Overall, our study indicates that our framework can enhance the robustness
of challenge-based CIDNs in the aspects of both trust management and alarm
aggregation, through integrating with blockchains.

5 Discussion and Challenges

Though blockchain technology can bring a lot of benefits, it is still at a develop-
ing, which may suffer many challenges from both inside and outside [38].

– Energy and cost. The computational power is a concern for blockchain ap-
plications in real-world scenarios. For example, Proof of Work (PoW) may
require huge amounts of energy while doing bitcoin mining, where the elec-
tricity consumption could rise to 7.7GW by the end of 2018, which is almost
half a percent of the world’s electricity consumption.
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– Security and privacy. Though Bitcoin has been widely adopted, it does not
mean that it is safe. There are existing some types of attacks. Taking eclipse
attack as an example, as the chain nodes have to keep constant communica-
tion to compare data, an attacker can fool it into accepting false data if he
/ she has successfully compromised that node [40]. This results in wasting
network resources or accepting fake transactions. There is a need to enhance
the security of blockchain itself.

– Complexity and speed. Blokchain is a complex system that is hard to be es-
tablished from scratch. A single mistake may cause the whole system to be
compromised. Due to the complexity, it also suffers data storage and trans-
action speed issues. As a study, we only tried a proof-of-concept chain to
investigate the performance. It is an important topic to exploit the perfor-
mance when the blockchain runs for a while.

– Blockchain size. In the beginning of a blockchain, the node number may be in
a small scale, which makes it vulnerable to many attacks during the growth.
For instance, assume there are only 30 nodes, if a single entity successfully
controls just or more than 51 percent of the blockchain nodes, then it has a
high probability to control the whole outputs.

6 Conclusion

Challenge-based Collaborative intrusion detection provides a promising solution
to safeguard assets from being compromised; however, it may still be vulnerable
to advanced attacks in practical deployment. Motivated by the fast development
of blockchains, in this work, we propose a blockchained challenge-based CIDN
framework by leveraging the benefits offered by the blockchain technology. Our
framework enables nodes to form a consortium chain and improve the robustness
of challenge-based CIDNs. In the evaluation, our results demonstrate that our
framework can enhance the robustness in the aspects of trust management by
detecting advanced malicious nodes, and alarm aggregation through identifying
untruthful inputs and reducing error rates.
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