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Abstract. In this paper, we first present a theoretical analysis model on the
Proof-of-Work (PoW) for cryptocurrency blockchain. Based on this analysis, we
present a new type of PoW, which relies on the hardness of solving a set of ran-
dom quadratic equations over the finite field GF(2). We will present the advan-
tages of such a PoW, in particular, in terms of its impact on decentralization and
the incentives involved, and therefore demonstrate that this is a new good alter-
native as a new type for PoW in blockchain applications.
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1 Introduction

The idea of Proof-of-work was invented in 1992 by C. Dwork and M. Naor [12]
and it was initially invented to combat the spam attacks and the denial of service
attacks by making such attacks economically unviable. Proof-of-Work can be
defined as a protocol, which requires certain ( from minimum to maximum)
amount of computations in order to finish a task. The computation performed
should produce something, which can be used to verify that the required amount
of computations are indeed accomplished. The concept of Proof of Work has
since found application. In 1997, Adam Back invented a protocol: HashCash,
where Proof-of-Work is built upon a hash function. The term ”PoW” was coined
by M. Jakobsson and A. Juels later.

In October of 2008, Satoshi Nakamoto published his Bitcoin whitepaper[16],
where Proof of Work is a key element of the Bitcoin protocol. The white paper
stated that

”We propose a solution to the double-spending problem using a peer-to-peer
network. The network timestamps transactions by hashing them into an ongoing
chain of hash-based proof-of-work, forming a record that cannot be changed
without redoing the proof-of-work.”

Satoshi cited the work of HashCash. Therefore, however, the application of
the PoW in Bitcoins serves a purpose very different from the original intention.
A key innovation in Bitcoin is that it uses a Proof of Work to build a competitive
process called mining, which, with the help of digital signature system, help to
solve three key problems:
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1. prevention of the unlawful modification of the record or high cost of unlaw-
ful modification of the record;

2. synchronization of a decentralized system.
3. prevention of double spending;

In terms of our understanding, the main function of PoW is actually the
property (1) and (2), since double spending is actually detected through the dig-
ital signature and therefore the stability of the blockchain due to the functional-
ity of PoW enable us to easily solve the problem of double spending. Therefore,
in bitcoin, Proof of Work systems is used to provide stability and security to
an entire decentralized network, where we do not request trust on any speci-
ifc player but the trust of the overall whole set of players. Proof of Work is
used mainly to build a stable consensus mechanism, namely if there are enough
mining nodes participating to perform the PoW, then the computational PoWer
needed to control or attack the network becomes unattainable for any single en-
tity. Also mining was really a great promotion tool to bring people participating
in the process to therefore build a truly trustworthy decentralized system. How-
ever, as we all know, due to the appearance of the ASIC mining machines, the
mining PoWer is increasingly controlled by big business players, and it does not
make any sense for an ordinary user to doing mining on his or her PC on the
side.

Later people invented many new PoW algorithms for various new altercoins,
which we will not mention here, since none of them give a solid scientific base
for their choices. In this paper, what we would like to do is to perform a complete
theoretical analysis of PoW in the context of PoW for cryptocurrency, namely
what are the theoretical properties we would like to have for a good PoW for a
cryptocurrency. There is some initial work done before [15] in this direction but
it is rather incomplete.

Then we will present our new PoW system, which is based on solving a
set of random multivariate quadratic equations over GF(2), and we will show
advantages of such a PoW system.

Remark 1. Here we would like to remark that the new PoW in bitcoin invented
something that we humans never had before namely we can produce a docu-
ment, which can be destroyed but can not be altered without incurring a tremen-
dous cost. From this perspective, we believe PoW is much better choice than
Proof of Stake (POS), since in a POS system, if someone controls the system,
they can do whatever they want with essentially no cost, but in the case of PoW
system for bitcoin, even if someone controls the system, if they want to do some-
thing illegitimate, to change the record, they still must pay a high prize, which
is the best deterrence against the corruption of the system.
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2 Theoretical Analysis of PoW in Bitcoin and its Theoretical
Model

The definition of PoW first requires certain amount of computations in order to
finish a task and the computation performed should produce something, which
can be used by anyone to publicly verify that the required amount of computa-
tions are indeed accomplished. From the mathematical perspective, we can view
PoW as a task to solve certain mathematical problem, which can be verified by
anyone. This requires clearly two properties of this mathematical problem:

1. This mathematical problem requires a certain amount computation ( or a
certain level of computational complexity) and no one should be able (eas-
ily) to find a new way to solve the problem that substantially reduce the
computation complexity, which otherwise allow certain people to cheat. We
call such a property the intrinsic hardness (IH) property of the problem.

2. Anyone can easily verify the solution is indeed a solution, We call this the
solution public verifiability (SPV) property of the problem.

The IH property clearly indicates that we should use some problem that is
a historicalluy very well-studied hard problem and we know very well compu-
tation complexity to solve this problem. Clearly in the case of bitcoin, Satoshi
chose a very good problem, which we call the partial invertibility (PI) problem
of hash functions. A simplified way to define the problem can be presented as
the problem to find a string x of fixed length, such that

H(B, x) = (0, 0, ..., 0, ∗, ...∗),

where B is the block to be mined, H is a Hash function and ∗ means values we
do not care. Namely the problem is to find a preimage of any element whose
first fixed number of entries are zeroes. This problem is hard to solve due to
the Non-invertibility property of the hash functions, namely we can not find the
preimage of a Hash function for a randomly chosen elements in the image space.

But one thing he missed, we believe, is that he did not expect that the ASIC
machines can gain so much advantage compared with our ordinary PCs ( scale
of million), which, in some way, causes some kind of centralization of the min-
ing PoWer being in the hands a few big miner and mining pools. However from
the recent history of development of Hash function, we should also know this
problem is not one of the historically well-studied problem since hash functions
has a short history, and as we know the Non-invertibility hash function ( like
MD5) can be broken[11, 18].

In the case of bitcoins, since it is a decentralized system, it means the min-
ing problem that needs to be solved for each block in any node can be easily
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set up by anyone who has the information about the block, and the specific
problem itself can also be easily verified. We call this the easy set-up and pub-
lic verifiability (ESUVP) property of the problem. Since the Hash function is
standardized and widely used, it clearly satisfies this property.

Also we should require that one can not easily find a block such that the
problem associated with that block is substantially easier than the usual mining
problem. This implies that in this family of the mathematical problems, it is
computationally impossible to find a problem which is substantially easier than
the hardest cases. We call such a property the homogenous hardness (HH) of the
problem. We can see that if the problem is not HH, it is possible for someone
to find an easier case and mine on such a case to gain advantage over others. In
the case of bitcoin, it means that we can not easily find a meaningful B ( a valid
new block) such that it is easy to find x such that

H(B, x) = (0, 0, ..., 0, ∗, ...∗).

Surely one may say that that if we find already a solution for the problem,
H(B, x) = (0, 0, ..., 0, ∗, ...∗), we can repartition (B, x) to derive another so-
lution, but this is impossible due to the fact that we want x to be of the fixed
length.

In the case of bitcoin, to ensure the timing of mining of each blocks to
be stable, the hardness of the problem of mining is adjusted accordingly if the
mining time is substantially higher or lower than 10 minutes. This means we
can actually adjust hardness in a controlled manner. In this case of bitcoin, the
hardness is adjusted by increasing or decreasing the number of bits of zeroes,
namely by increasing or decreasing the number of zeroes in the R.H.S. of

H(B, x) = (0, 0, ..., 0, ∗, ...∗).

The hardness is basically either doubled or halfed when we increase or decrease
the number of zeroes of the Hash image. Surely it will be much better to have
ways to make more precisely controlled, for example, reduce hardness by a
fixed percentage, however such a problem is clearly not easily to find. We will
call this the difficulty adjustability (DA) property[15].

One more thing the bitcoin system wanted is that it should be a decentral-
ized system that anyone can participate and make meaning contributions in the
mining process. This means that the algorithm to solve the problem can be dis-
tributed independently to many independent users. We call this the independent
distributability (ID) property of the problem. In the case of mining for bitcoin,
we actually do a brutal force search on x for all H(B, x), which can be easily
distributed. If a problem does not have this property, then the participants will
be very limited and it will not be a true decentralized system.
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One more key property for PoW problems is that we should make sure that
the work done for one block can not be reused substantially for another block,
otherwise it will make it very hard to control the hardness since anyone can gain
advantage in mining or even performing attacks. One such extreme situation
is that, for any mined block, if someone can easily find a new block, which is
associate to exactly the same hard problem and therefore has the same solution,
then miners could reuse this problem and the solution to cheat or perform an
attack by replaced published blocks with new and different blocks. In general,
it is better to have the property that the mathematical problem associated with
a given block to be uniquely determined, and for any given two blocks whose
associated problems are totally independent and therefore no work done in one
problem can be reused in another. Overall, the key is that work done for one
block can not be (meaningfully) reused for another block, and this is called
non-reusability (NR) properties[15].

Overall our conclusion is that a good PoW problem should have the follow-
ing properties:

1. the intrinsic hardness (IH) property,
2. the solution public verifiability (SPV) property,
3. the easy set-up and public verifiability (ESUVP) property ,
4. the homogenous hardness (HH) property,
5. the r difficulty adjustability DA) poperty,
6. the independent distributability (ID) property.
7. the non-reusability (NR) property.

From the above analysis, we can see that it is not easy to find such a problem,
in particular, the properties IH and HH. It is clear to us many of the new PoW
algorithms in altercoins are very risky choices since we know not so much about
the hardness of these problems. Also it is very clear that Satoshi made a very
good choice with what we knew at the time.

In [15], Kim presented a new PoW where he pointed out clearly the NR and
DA property, but he did not state clearly the rest of the properties, in particular,
the ID property. He presented a new POW using prime numbers, but it is not
clear that his PoW satisfies all the properties we have here and we will address
it in a subsequent paper.

3 A New Proof of Work Based on Random Multivariate Quadratic
Equations

In this section, we propose a new idea to build a new family of PoW algorithms.
The basic objects of this section are systems of quadratic polynomial equations
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in several variables over a finite field F = Fq with q elements (see equation (1)).

p(1)(x1, . . . , xn) =

n∑
i=1

n∑
j=i

p
(1)
ij · xixj +

n∑
i=1

p
(1)
i · xi + p

(1)
0

p(2)(x1, . . . , xn) =

n∑
i=1

n∑
j=i

p
(2)
ij · xixj +

n∑
i=1

p
(2)
i · xi + p

(2)
0

...

p(m)(x1, . . . , xn) =
n∑

i=1

n∑
j=i

p
(m)
ij · xixj +

n∑
i=1

p
(m)
i · xi + p

(m)
0 . (1)

A well-known hard mathematical problem is the MQ Problem:

Problem MQ: Given m quadratic polynomials p(1)(x), . . . , p(m)(x) in the n
variables x1, . . . , xn as shown in equation (1) with the coefficients of the equa-
tions uniformly and independently random chosen, find a vector x̄ = (x̄1, . . . , x̄n)
such that
p(1)(x̄) = . . . = p(m)(x̄) = 0.

The MQ Problem is proven to be NP hard including quadratic polynomials over
the field GF(2) [13] when m and n are of roughly the same size and this problem
is known to be hard on average. In this paper we will now only concentrate on
the case of GF(2).
The hardness of the MQ problem is the security foundation of the multivari-
ate public key cryptosystems [6], a new family of post-quantum cryptosystems
that can resist quantum computer attacks. Several such algorithms including
Rainbow signature [9] are selected in the second round of the National In-
stitute of Standardization of Technology post-quantum crypto standardization
process[17].

The idea of using MQ problem for PoW is inspired by the work [10], where
the MQ problem is used to build a Hash functions. However that Hash func-
tion has some security issues due to the collision resistance but NOT non-
invertibility.

We will now present the construction of the new PoW algorithm based on
the MQ problem.

First we will select
n = m + 8,

namely we will have 8 more variables than the number of equations.
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Let us now count the number of bits of coefficients of the all the polynomials
p(i), which is

N = m× (n(n− 1)/2 + n + 1) = (n− 8)(n2/2 + n/2 + 1).

Suppose that we have a block B which needs to be mined. The node will
then compute

hi = H i(B) = H(H(..H(B))),

for i =, 1, 2..., dN/256e, if H is a 256 bit Hash function( or i =, 1, 2..., dN/512e,
if H is a 512 bit Hash function).

Then we will use hi one by one to assign them in a fixed order to be the coef-
ficients of the multivariate polynomials p(j)(x1, . . . , xn), and dump any leftover
bits.

Then the mining task is to find a vector

x̄ = (x̄1, . . . , x̄n)

such that
p(1)(x̄) = . . . = p(m)(x̄) = 0.

Here we would like use the random oracle mode [2] to claim that we can
view these polynomials are indeed random polynomials since we can treat a
hash function as a random oracle.

Practically, the first question one may ask is that if there is indeed a solution.
The answer is positive with extremely high probability.

Theorem 1. For a MQ map with m random polynomials and m + 8 variables,
the probability that

p(1)(x̄) = . . . = p(m)(x̄) = 0

has no solution is approximately e−256, when m is big enough.

Here we will give a sketch of proof assuming the that the quadratic map is a
random function. Assume that we have a map from GF (2)m+8 to GF (2)m, due
to the randomness of the hash functions, we can assume that this is a random
functions. Then this becomes a map from a set of size 2m+8 to a set of size 2m.
We would like to find out the probability that there is no vector being mapped
to (0, ..., 0, 0). It is easy to see that the probability is given as

(1− 2−m)2
m+8

= ((1− 2−m)2
m

)2
8
.
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We know that if m is big enough ( like 30), we have that

((1− 2−m)2
m

) ≈ e−1.

Therefore the probability will be roughly

((1− 2−m)2
m

)2
8 ≈ e−256.

This more or less guarantees that a miner can always find a solution.
From the construction, it is clear that the solution public verifiability (SPV)

property and the easy set-up and public verifiability (ESUVP) property are sat-
isfied.

Due to the usage of hash functions, which can be viewed as a random oracle,
to produce the problem, we can see that two different blocks can never have the
same mining problems due to the collision resistance of hash functions and they
should be essentially independent of each other. There the property of NR is
satisfied.

Let us then look that the intrinsic hardness (IH) property, which is actu-
ally guaranteed by the NP-Hardness of the random MQ problem, and similarly
we can promise the homogenous hardness (HH) property due to again the NP-
Hardness of the random MQ problem.

Here we would like to remark that the hardness of partial inversion of a
hash function in general has a much higher theoretical risk in the sense we can
not actually prove the hardness of such a problem for the existing hash function,
which is evident by the fact that in the past hash functions like MD5 were broken
pretty badly.

Now, we would like to discuss the independent distributability (ID) prop-
erty of the MQ problem. In terms of human history, more than four thousand
years ago, Babylonian mathematicians could solve the problem of single vari-
able quadratic equations. For multivariate quadratic equations, the first ”smart”
algorithm appeared in 1965 by Buchberger [4]. However for the problem we
proposed for mining, the state of the art of the best algorithm is actually again
the brutal force algorithm, which is clearly indicated in the Fukuoka MQ chal-
lenge , where there is a public challenge to find solutions for such problems
(https://www.mqchallenge.org).

Due to the situation above, we also know that we can easily adjust the diffi-
culty of the problem for each block by adjusting the number of equations where
adding one more equation and one more variable means essentially doubling the
hardness and reducing one equation and one variable means halfing the hard-
ness. Therefore our PoW satisfies the DA property.

In addition, the new mining algorithm has other clear advantages.



9

1. The first one is the property we call ASIC resistance. Namely due to the
following properties:

– the simplicity of calculating the value of multivariate quadratic polyno-
mials, which involves very few number of simple addition and multi-
plication in GF(2) after checking the first element, by this we mean that
in the fast implementation of multivariate quadratic polynomial solving,
we use the so called Gray code, where we search solutions in the order
that each time we check if a new element is indeed a solution, it has
only one bit difference from the previous element checked, to speed up
tremendously the computation [3].
More precisely, for a quadratic function f(x1, ..., xn) over GF(2), it can
be written as

f(x1, ..., xn) =
∑
i<j

aijxixj +
∑

bixi + c.

We will look at the case where there only 1 bit change on x1. Assume
that we already know the value of f(x1, ..., xn) and we would like to
calculate f(x1 + 1, ...xn). We know that

f(x1 + 1, ...xn)− f(x1 + 1, ..., xn) =∑
j>1 a1j(x1 + 1)xj + b1(x1 + 1)−

∑
j>1 a1j(x1)xj + b1(x1) =∑

j>1 a1jxj + b1.

This means that

f(x1 + 1, ...xn) = f(x1 + 1, ...xn) +
∑
j>1

a1jxj + b1.

Therefore we only need to calculate∑
j>1

a1jxj + b1

to derive the value of f(x1 + 1, ...xn) from the value of f(x1, ...xn).
Similar formula applies to the case of change of value of any variable
xi.

f(x1, ., xi, .., xn) = f(x1, ., xi, .., xn) +
∑
i 6=j

aijxj + bj .

For such a simple calculation, GPU can achieve already great efficiency
that ASIC should not be able to improve too much, while this is not the
case at all in the case of PoW using hash functions.
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– the polynomials for each block actually changes all the time (almost
like we use a different hash function for every block), which make it
hard and costly for ASIC implementations.

we do not think that ASIC implementation can gain that much advantage
compared to the usual GPUs. Surely this is based on our current technology.
We believe that ASIC surely will gain advantages but it will not be more
than a scale of 10 while the advantage of the case of bitcoin is about the
scale of 5000. Due to the high initial cost in ASIC production, we think this
design should greatly discourage the development of ASIC machines for do
such a mining and therefore make it viable for small miners to do mining
independently.

2. There is some work recently on attacks on PoW using quantum computers
[8],[14] , [1] due to the large key sizes of the coefficients of the MQ poly-
nomials, the MQ-based PoW will be much harder to attack using quantum
computers since it will require much more qubits for finding solutions and
each time a different new set of multivariate quadratic functions has to be
reloaded into the quantum system.

3. Due to the long history ( thousands of years) of study of solving polynomials
equations and the NP hardness of the problem, we expect that to attack our
new PoW is much harder.

4. In the case of mining in bicoins, the mining is used solely to support the
decentralized network. But in the MQ-based mining, the system actually re-
wards any progress made on solving a NP-hard problem, which is a much
more meaningful task compared to the case of hash-based mining. For ex-
ample, many of the problems to attack various cryptosystems, namely many
of the cryptanalysis problem, can be reduced to solving a hard seeming ran-
dom quadratic systems over GF(2) and any breakthrough in this area could
have tremendous effect in cryptography.

The new ideas presented in this paper is already implemented in a new cryp-
tocurrency called ABC (www.ABCMint.org) [5, 7] and it has worked very well.
The research work in this paper was essentially finished in 2017. The public
chain for ABC was launched on June 18, 2018. However this paper is the first
publication to explain exactly the mathematics theory behind the PoW in ABC.

Surely there are many well-studied NP-hard problems, for example, the
shortest vector problem (SVP) for a lattice. However if we want to use the SVP
problem for mining, it is not a good choice due to the property SPV, and ES-
UPV. It is very hard to set up a SVP problem such that everyone can publicly
verify, it is indeed a hard problem and no one can cheat in the set up process.
This is why , unlike the MQ challenges, it is hard to set up pubic SVP chal-
lenges. Namely if it is indeed a random lattice, it is very hard to verify a given
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vector is indeed a shortest vector or not. Therefore it is actually better to use
NP-complete problems, where we can easily verify the answers. A good ex-
ample of a NP-complete problem is the Knapsack problem, but the Knapsack
problem does not satisfy the HH property while the hardest cases of Knapsack
problem is very hard but a random case is often easy to solve. To build the hard
for PoW for cryptocurrency is not an easy task. From what we know by now,
we believe nearly all the new PoW algorithms for altercoins needs much more
careful scrutiny and they all look rather risky.

4 Conclusion

It is clear that PoW in bitcoin is different from usual PoW used in other applica-
tions and requires additional properties. We present a theoretical study of those
properties required and propose a new PoW algorithms based on the MQ prob-
lem an NP-hard problem. We show the advantages of this new PoW. We hope to
use this work to stimulate the research direction in PoW for cryptocurrencies.
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